Wonderware® FactorySuite®
InTouch® Extensibility
Toolkit

User’'s Guide
RevisionB
January, 2000

Wonderware Corporation

All rights reserved. No part of this documentation shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the
Wonderware Corporation. No copyright or patent liability is assumed with respect
to the use of the information contained herein. Although every precaution has been
taken in the preparation of this documentation, the publisher and author assume no
responsibility for errors or omissions. Neither is any liability assumed for damages
resulting from the use of the information contained herein.

The information in this documentation is subject to change without notice and does
not represent a commitment on the part of Wonderware Corporation. The software
described in this documentation is furnished under alicense or nondisclosure
agreement. This software may be used or copied only in accordance with the terms
of these agreements.

a 2000 Wonderware Cor poration. All Rights Reserved.

100 Technology Drive
Irvine, CA 92618

U.SA.

(949) 727-3200
http://mwww.wonderware.com

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Wonderware Corporation cannot attest to the
accuracy of thisinformation. Use of aterm in this book should not be regarded as
affecting the validity of any trademark or service mark.

Wonderware, InTouch and FactorySuite Web Server are registered trademarks of
Wonderware Corporation.

FactorySuite, Wonderware FactorySuite, WindowMaker, WindowViewer, SQL
Access Manager, Recipe Manager, SPCPro, DBDump, DBLoad, HDMerge,
HistData, Wonderware Logger, Alarm Logger, InControl, InTrack, InBatch,
Industrial SQL, FactoryOffice, FactoryFocus, License Viewer, Scout, SuiteLink and
NetDDE are trademarks of Wonderware Corporation.

Contents

Chapter 1 - Introduction to the InTouch

Extensibility ToolKit..........ccoooeeiiiiiii e, 1-1
About the InTouch Extensibility TOOIKIt.........cccceveeveeieeie e 1-2
Installing the InTouch Extensibility TOOIKItccccoeeiiiii i, 1-4
Hardware/Software REQUIFEMENEScoeierererieecie e 1-4
Windows 98 and Windows NT Compatibilityccccoeeiiniiinieninineereee 1-4
Developer REQUITEIMENES........coiiieiiiiie sttt s e 1-5
Documentation CONVENLIONS........cccuiririereierienesieereeee e e e e e 1-6

Terms Used in thiS DOCUMENE.........ccooiiiiienene e 1-6

Chapter 2 - Getting Started with the Wizard

TOOIKIT oo 2-1
WHhaEL ISAWIZAIT?.....ceeieiie e e 2-2
The Components of aWizard DLL.........ccocoviiiiininieeee e 2-3
WIiZAIA BASICS....c.veeiieiesieei ettt st 2-5
Simple Wizard .DEF File EXaMPIecccoiiiiirieeiieee e 2-7
Building @ SIMPIe WizZard...........cccoueiiriiiieneeeeeeee e 2-8
WIZARD.C FilE ...ttt sttt sttt st 2-9
GlODAIS. ...ttt et 2-11
Integrating aWizard into WindowMaKerccccvvveeieeieececce e 2-12
Wizard_GetInfo EXampPIe........ccooiiiiiiireeeee e 2-14
Simple Wizard .RC File EXaMPIe.........cooiirimiirieiereesese e 2-17
Building the WIzard DLLccooeiienieeceiee et 2-17
Installing the Wizard in WindowMaKercccooviiriieieeneene e 2-17
WiZard LIDrariEs.ooeeeeeee e e 2-18
Creating Libraries with Multiple Wizards............ccocovininineninicienene 2-19
NamiNg CONVENLIONScceeiierieiie e re e 2-21
Building a Configurable Wizard.............ccocoevieiieiicie e 2-22
Specia Wizard Diadlog CONLIOISccoiiiiririnereeie e 2-31
Wizard Toolkit Dialog FUNCLIONS.........c.cccueiiierieeiece e 2-36
Chapter 3 - Wizard Toolkit Functions 3-1
Wizard DLL Standard FUNCLIONS..........cooiiiiiienereeieeeie e 32
Wizard APl FUNCHIONS ...ttt e 33
GENEral FUNCLIONS.... .ottt 33
ODJECE FUNCLIONS.......co ettt et snaenrae s 34
L] Y Vo 1 o 3-6
LiNK FUNCLIONS. ...ttt 3-7
Wizard Property FUNCLIONS.........ccooiiiieieneeeeeee e 3-8
User Interface FUNCLIONS..........coiiiiiieeeneee e 3-10
Database Tag FUNCLIONS........cccoiiiie e 311

ii Contents
Functions Required to Integrate Wizards into INTOUCh.........cccccevivvvvevceccrceenne 4-4
WiZard_ GEUNFO....cueiviieiries e 4-4
WizZardLibD_GEtINfOcueiuiieiiiie e 4-6
(000]1010.07=1010 V1Y 2= 0 S 4-7
Wizard_ DOCOMIMENG.........coueuririeiriinieisesieeee st 4-7

Chapter 5 - Style Guide for Wizard Library

Development ..o 5-1
Guidelines for Wizard Library Developmentcccovevvenennieneneneseese e 5-2
Creating Librarieswith Multiple Wizards..........cccoeovineininninineneneens 5-2
Wizard Library DIFECLOMYc.courueeririeirerieeeesieseee s 5-2
WizZard C MOAUIES........c.oiuirieiriirieresee ettt 5-3
FUNCLION NGIMES........ociiieeere e 5-3
WZIMAIN.C...oo ettt ettt s e s te e seesene e 5-3
HEAOE! FIl ..o e 5-4
Definition (.DEF) File ..o e 5-6
ReSOUICE (\RC) Fil€...uiiiiciiee e 5-6
Chapter 6 - Wizard API Function Reference...... 6-1
ACCESSNEME FING ..o e 6-2
AccessName _FiNdAPPITOPIC. ...ccuevririirererse e 6-2
ACCESSNEME_GEUINTO ...t e 6-2
ACCESSNAME_GEINGMEooeiieiistisi e 6-3
AccessName_GetUNIQUENGIME..........ccouiririeiresieeeese e 6-3
ACCESSNAME INBW ..o 6-4
ACCESSNAME_SELINO......civieiieeiriere e 6-4
ACCESSNAME_SEINEIME.......eieeieriesiestere e 6-5
ALArMOD] _INEW .. 6-5
ANIGATAIMLNK _NBW ...t e 6-8
ANIGCOIOTLNK NEW ..c..ceiviiiiierietee s 6-11
ANIGINPULLNK _NEW ...ttt 6-12
ANIGOULPULL NK_ INEW ...ttt 6-13
ANIGTAG. GEUNFO....cvieeiiriire s 6-13
ANIGTAY._SELINO ..ot 6-14
BitmapOh] _INEW. ..o e 6-14
BIINKLNK _INEW ...ttt 6-15
BULLONOD] _INBW........oiiiiiiere e 6-16
DisablELNK_ NEW ..o e 6-17
DiISCAIAIMLNK_NEWcouiiiiiriirieeieree e 6-18
DiSCCOIOrLNK _INBW ... e 6-19
DiSCINPUELNK_ NBW......cociviiiiiriiiercrees e 6-20
DiSCOULPULLNK _INBWviiiiiiiietreestee e 6-22
DiSCTag_GEINFO....eieieiieiiereres e 6-22
DiSCTag._ SENFO...ccuiieiirtiriirere e 6-23
DiSCTOUCNLNK _INEW. ...ttt e 6-23
D11 o] L TR 6-25
EHIPSEOD] _INEW ...ttt 6-26
FONE_SCAIE.....ccuiieiieteree bbb 6-27
GrOUPOD] _INEW ...ttt bbb 6-28
HISETrendObh] _NEWooiiirieee e 6-29
LiNEOD] _INEW ...ttt bbb 6-31
LOCALTONLNK_INEW ...c.cvieiiciirienieseree e 6-32
L@ T BT = (SR 6-34
OrientatioNLNK_NEWccoiiiiiiee e 6-35
PCLRIHTLNK _INBW......oiiiieicee e 6-36

Contents i

POINLATTAY _SCAIE......oeiiiitiieieriereee et 6-40
POINIREBI_SCAIE......eoeieirieeeieree e 6-42
POINtREBIATTEY _SCAIE.......oeeeiriiecireee e 6-44
POIYGONOD] INEW ... e 6-46
POIVIINEOD] INEW ... e 6-46
Real TrendOb] _NEW.......cooieiieeeree e e 6-47
RECE_SCAIE ..ottt bbb 6-49
ReCtangleObh] INEW ..o 6-52
RECIREBI_SCAIB......covieeiirieeeie e 6-53
RReCtangleObh] _NEW ..ot e 6-56
SIZELNK NEW ..ttt st sre e 6-57
SHAETLNK NEW ..ottt 6-59
SEME INEW e r e 6-61
SIMETOUCHLNK_NEW ...ttt 6-62
SUTNPULLNK _NEW ..ttt sre e 6-63
SrOULPULL MK _INEW ...ttt sttt see e 6-64
SUTAY SEINO.....eivieeeiieie e 6-65
SYMBOIOD]_NEW ... 6-65
TAG_ FING. i 6-66
Tag_FindAPPITOPICHEM ..o s 6-66
Tag_ GELACCESSINFO ...cviiiiiiireeere e 6-67
IE="s B L= (€1 (011 o TSR P PP 6-67
TaG_GELINTO .t 6-67
Tag_GetReteNtiVEINTOc.civiciricre s 6-68
Tag_GetUNIQUENAIME.........coiieireirieiete et 6-68
Tag_GetVaUBATAIM.....c.eceiiiiierees e 6-68
TAY NEW .o 6-69
Tag_ SEtACCESSINTO ..o s 6-70
Tag_SetDeviatioNALBIMcooiiirerere s 6-71
Tag_SEtDISCATAIMooviiiiiieere et 6-71
Tag_ SEEVENEINTO....c.eiiieirie s 6-71
TAG SEIGIOUD. ..c.vereterieeieeeeee sttt sttt e bbbt n e nr e nn e 6-72
TaG_SEINFO .ot s 6-72
Tag_SetRateOfChangEATAIMcociririeiree s 6-72
Tag_SetRELENtIVEINFO ..o s 6-73
Tag_SetSCaAliNGINTO ...cc.eiveirireere s 6-73
Tag_SEtVaAUBATBIM ..o s 6-73
TEXE GEIEXIENL.......coveieieieece e 6-74
TEXLOD] _INBW ...t 6-75
TrendOb)_SEtItemM ..o s 6-76
TrendObj_SetTIMEINTO ...c.coireirie s 6-77
TrendObj_SetValUelNfO ..o 6-78
ViSIDITIEYLNK NEW ..o 6-79
WiZardOD] INEW......coeriiiicee e 6-80
WIZPrOP_DEIELE ...t 6-81
WIZPIOP_FiNG.....iiiiiiiese e 6-81
WiZProp_GEtBIOCK........c.ciiriiiririeecree e 6-82
WizZProp_GetDOUDIE ... 6-83
WiZProp_GEtDWOITcoiriieriirienierie et 6-84
WIZPIOP_GELEXDE ..oviiieiiiiriesiesiee ettt 6-85
WIZPrOP_GELFONL ..ottt 6-86
WiIZPrOP_GEESIML.....viieiiieireeecre e 6-87
WiIZPrOP_GEESIIING ..ot 6-88
WIZPIOP_INBW ..o 6-89

WIZProp_SEtBIOCKcccuiiiiriiiiirieieeree e 6-90

Contents

WiZProp_SetDOUDIE.......ccoiiiiierieriere s 6-90
WiZProp_SEtDWOI.......coiieiiriiriecnieriecee e 6-91
Wi ZPIOP_SEIEXPI ...cviiiiitirieeste sttt 6-91
WIZPrOP_SEtFONT ..ottt 6-92
WIZPrOP_SEESEME ..ottt 6-93
Wi ZPrOP_SEESIIING ..ottt 6-93
WWDIG_CheCKEXPICT ..o 6-94
WWDIG_CheCKTagCIcecueieieeiriiieireree s 6-95
WWDIG_GEtDOUBIECH ...t s 6-96
WWDIG_Processk@yCLrl........ccuvierireiririeeneseeese e 6-96
WWDIg_RegGIStErCOIOICLIT ..o s 6-97
WWDIg_ReGIStErKEYCH ... 6-98
WWDIg_RegisterTagNameCH.........ooevvireiririeneriere s 6-99
WWDIG_SCIPLEIt ..ot 6-99
WWDIG_SetDOUDIECHL.......cceiiiieeiiiieeierieree e 6-100
WWDIg_UnregiterColOrCLrl.......c.ovivieiiereieriereeeseneeese e 6-100
WWDIG_UNregiterKe@yCHr|cocviviciiereeerieneeesie e 6-101
WWDIg_UnregisterTagNameCtrccocoveereneinineeneneee e 6-102
WWEKI_GELKEYSIAIUS ..ottt 6-102
WWEKI_GELLASIEITONoviiceiiiiee e 6-103
WWEKit_GetSerialNUMDEN ..o 6-104
WWKIE TN sses s sees s sesssnssneeas 6-105
WWKIt_SEIBIUSH.........vveeeeeeeeeseseeesesseesssesssesesessssesssessessssesssssssesssesssnsenns 6-105
WWKIt SEEIFONEovoveeeeeeeeeese e eseeeseesssesssesseesssessssessssssnsssnsens 6-105
WWKIE SEIPEN ...t snssse s sssesssessnsnns 6-106
WWEKI_SETEXIBIUSN ..ot 6-106
WWKit_ SETEXIPEN.......ovvoveeeeeseeeeeeeeeeeeseeeeeses e eseseesesesssnsssesssnsssnsens 6-106
Chapter 7 - Wizard API Structurescc...... 7-1
ACCESSNAMEINFO ...ttt 7-2
ANLGTAGINFO.eiieeeee ettt sttt saeesseeseees 7-2
DEVALARMINFO ..ottt sttt snees 7-3
DISCALARMINFO ...ttt et 7-4
DISCTAGINFO ..ottt sneesneeneees 7-4
ROCALARMINFO ..ottt st et snee e 7-5
STRTAGINFO ...ttt st 7-5
TAGACCESSINFO......cooiitieeeeeseese e se e e e e nseeee e 7-6
TAGEVENTINFO ...ttt s 7-6
TAGINFO ...ttt ettt e e e e e sneenreenreens 7-7
TAGRETENTIVEINFO. ..ottt nne e ens 7-7
TAGSCALEINFO ...ttt se e e enre e ens 7-8
VALALARMINFO ...ttt nnees 7-9
Chapter 8 - Testing and Debugging Wizards.....8-1
Testing GUIdeliNeS fOr WiIzZardsS.........cooovveevineeininciseneese s 8-2
Testing aNewly Installed Wizard ... 8-2
TeSting WiIZard SIZiNGcocoveevinieirinieeneneese e 8-3
Testing Wizard Editing Capabilities...........coevirenininnereesesiee 8-4
Testing Wizard ConfigUIrations............ccoecevireenineeninieese e 85
Testing Toolbox Operations on aWizard...........ccoeevereenenenenenenees 8-6
SPECIAl WiIZard TESS ..ottt 8-7
Sending Debug Messages to the Wonderware LOGgEScoeerererererenerenieenns 8-8
Using CodeView to Debug the Wizard DLLcccocvereienininineeeseeeeeiee 89

Using Visual C++ 10 DEDUG.ccceeririiiiiie s 8-10

Contents v

Chapter 9 - InTouch QuickScript Functions...... 9-1
Getting Started with the QuickScript TOOIKt..........cooeirireinircinencse e 9-2
FLBOS .. ettt be e 9-5
Pasting FUNCLiONS and ArQUMENES........cciiirinieere e 9-6
Highlighting Replacement ValUEScooeirineenenceneneeese e 9-6
Installing Y our SCript EXIENSIONScoeiririiinerieeeseeee s 9-7
SAMPIE SCIIPL.cectit et 9-7
Combining the QuickScript Functions with IDEA..........ccooovineinenccneneeniees 9-9
Chapter 10 - IDEA TooOlKit.......cccevvuiiiiiiiiiiinee, 10-1
REQUITEMENES ...ttt bbb 10-2
IDEA TOOIKit CONENES.......coviiriirieirieriercsiee e 10-3
FUNCLiON@l DESCIIPLION........eveiiieireeiirierieees et 10-4
SPECIAl DA TYPES....veivieetiriereeierie ettt sttt st bbbt bbb 10-5
Access D HandIeS (ACCID) ..o 10-6
POINt HANAIES (HPT) ..o e 10-6
Activating VariabIES ... 10-7
INTOUCh Variable TYPES ..o 10-7
Reading INTouCh VariabIes..........cocoveiiiniiice e 10-8
Writing INTouch Variables.........coooviienrieee e 10-8
Detecting INTOUCH EXITS.....ccoiiiiiiriereneresere e 10-8
Storing Program Datawith EaCh HPT ..o 10-9
Tag Handles and Memory USBgE. ..o 10-11
ACCESSING REMOLE TAGS .. e iveeeierierieiestereeiesie ettt b e ebesre e 10-13
Program EXAMPIES........coiirieiiireenieneese st 10-14
EXBMPIE HL ..ot 10-14
EXBMPIE H2 ...t 10-15
EXBMPIEHI ... 10-16
EXBMPIEHA ... e 10-19
EXBMPIEHD ...t 10-19
IDEA Programsin the Windows NT EnVironment...........c.ccoeevereieneneienenens 10-20
InTouch Notification of Tag Changes..........cccvverieerineineneese e 10-21
PtAccActivateAndNotify and PtAccHandleActivateAndNotify................ 10-21
PtAccActivateAndSendNotify and PtAccHandleActivateAndSndNotify.. 10-22
Running IDEA ToOolKit SEMPIES........ccoeerireirireeereriene s 10-25
FUNCLION REFEIENCE..... .ottt 10-26
FUNCLION SUMMAIY ...t 10-26
PLACCACCIDFIOMHPT ...t 10-28
PLACCACHVELE. ...t 10-29
PtACCACHVAEANANOLITY ... 10-30
PtACCACtivateANdSENANOLITYc.oovrieirie e 10-31
PLACCDEBCHIVALE ..o e 10-32
PLACCDEIELE.......ceceieie bbb 10-32
PLACCGEIEXIIAINL......cviiviieeeiieeeeeeesie e 10-33
PLACCGELEXIIALONG.veveieeeieeeeresiesre sttt 10-34
PLACCHANAIEACHVELE. ..o e 10-35
PtAccHandleActivateANANOLIfY.........covririiie e 10-36
PtAccHandleActivateANdSNANOLITYcoeverereriiireecee e 10-37
PLACCHANAIECIEALE.ccvieeeeiieee e 10-38
PtACCHaNAIEDEBCLIVALE.coueeiiirierc e 10-39
PLACCHANAIEDEIELE.........cueeiiee e 10-39
PLACCINIT ..t 10-40
PLACCOK ...ttt nrenne 10-41
PLACCREAMA ...ttt ee 10-41
PLACCREAODo.ecuiiiiieieieree bbb 10-42
PLACCREAI ..ot e 10-43

Vi Contents
PLACCREAAR ...t 10-45
PLACCSEIEXIIAINT ...t 10-46
PLACCSEIEXIIALONG ..o 10-47
PLACCSNULAOWN ..ottt 10-48
PtACCShUtdOWNATTASSOCILEM.........eeeeiriiieericsee s 10-48
PUACCTYPE .ttt 10-49
PLACCWIITTEA ..t 10-50
PLACCWIILED ...ttt 10-51
PLACCWIILEL ... 10-52
PLACCWIITEM ...t 10-53
PLACCWIILER ...t 10-54
Chapter 11 - ITEdit.OCXcouviiiiiiiieeiiieeeeeiin, 11-1
[TEAIt OVEIVIEIW ...ttt ettt sbe e ene s 11-2
RegIStEriNG ITEIL.OCX ..ottt 11-2
INSLA NG ITEAIL.OCX ...viitiiciiiieseeierie sttt 11-3
Configuring ITEIL.OCX ..ot 11-3
I TEit PrOPertiESccooveiiireeesteseecresie e 11-5
SLOCK PrOPErtiES.....c.ccviieeeeiirieete e s 11-5
CUSLOM PrOPEITIES. ...ttt bbb 11-6
ITACtivatioNMOdE Propertycccvereerinieirinieeseseeesie e 11-6
I TDAtAl SValid ProPErtYcoceeeireeieriinieesierie st 11-9
ITFOIMEL PrOPEITY ..ot 11-9
I TOffMESSAgE PrOPEITY ..ottt 11-9
[TONMESSAGE PrOPEITYcveivieiieieeieeeeie sttt 11-9
ITRUNNING PrOPEIY ..ottt 11-9
ITTagNAME PrOPEITY.....cocvieiieeeeeieeseeseeee e s 11-10
ITTagTYPE PrOPEITYoeeevieieeeeieriee et 11-10
[TV AIUE PrOPETY ..ottt 11-10
ITVaUeQUAlTY PrOPEIMY ...c.ccueiiereeieriereeterte s 11-10
EVENTS ... e 11-11
ITNOLITYVaAlUE BVENLooviiieiieceeeee e 11-11
ITNOtIfYQUELTTY EVENL.....c.oeieiriieceiriereerereere e 11-11
Using ITNotifyVaue and ITNOtifyQUalitycccoeveerineinirencree 11-11
Error DialOg BOXcoveueiiiieiirieneeierie sttt st neene 11-12
Chapter 12 - Tag ACCESSuvieveiiieeieiiieeeeiien 12-1
Tag Access ActiveX Objectsfor INTOUCN ..o 12-2
REGQUITEMENES ...ttt 12-3
Deployment INFOIMELION..........corveiiirieirerese e 12-4
DataChange ACtiVEX CONLIOlccoveeririeirinienereeese e 12-5
EVENTS ... e 12-6
MEBENOOS. ...t bbb 12-7
TrapPaDIE EFTOIS.....c.iiiieeiiiteeeieste ettt seenen 12-9
TagLINK ODJECL ..ot 12-10
PrOPEITIES. ...ttt 12-11
DOt Field PrOpeErti€S......ccovveeerierieirierieiesie ettt 12-14
TrapPallE EFTOIS... .ottt e 12-17
SaMPlE APPLHICALTIONS.......oeeiiriiieere e 12-17
Combining the DataChange Control and TagLink Object: An Example.......... 12-18
TagBrowser ACtiveX CONLIOl ..o 12-20
PrOPEITIES. ...ttt 12-20
IMELNOOS. ...t 12-26
EVENTS ... e 12-26

11

CHAPTER 1

Introduction to the InTouch
Extensibility Toolkit

The WonderwareO InTouchO Extensibility Toolkit is designed to alow a
proficient Windows C/C++ programmer to expand, customize, and add new
functionality and capabilities to the InTouch development or run-time environments.
By offering powerful development tools, and combining them in an open InTouch
environment, the Toolkit allows the creation of more powerful, user specific
applications than otherwise possible.

Contents

m About the InTouch Extensibility Toolkit

m Installing the InTouch Extensibility Toolkit

m Hardware/Software Requirements

m Windows 98 and Windows NT Compatibility
m Developer Requirements

m Documentation Conventions

1-2

Chapter 1

About the InTouch Extensibility

Toolkit

By using the InTouch Extensibility Toolkit, a developer can create Wizards, build
custom script functions, and access the InTouch database from other programs
through standard APIs or OCXs. Outside programs can be quickly linked in, and
custom DLLs can be simply created and utilized.

The following briefly describes each major section contained in the InTouch
Extensibility Toolkit:

Wizard Software Development Toolkit

The Wizard Toolkit provides the developer with the ability to create libraries of
wizards that will integrate into the InTouch environment and provide InTouch
application developers with a higher level of productivity. Wizards are created
to extend the InTouch functionality for a set of specific applications, or for
genera InTouch devel opment.

InTouch Script Functions Softwar e Development Toolkit

Script functions can be devel oped with the Script Functions Toolkit for use
within InTouch. These functions are able to utilize arich set of conditional
statements, functions, and data operators available in the C and C++
programming languages. The completed function(s) are integrated with the
devel opment environment (WindowMakerQ) so that they appear in the script
function selection dialog box. Scripts can be initiated by data change, pre-
defined conditions and/or operator action. Scripts may also run in the
background of the application or based on awindow being active.

IDEA Softwar e Development T oolkit

The IDEA (InTouch Database External Access) Toolkit provides devel opers
with ameans of directly accessing data in the InTouch tagname database. IDEA
supports the following:

Developers who wish to produce separate Windows programs that access
and/or change InTouch data

Developers of InTouch script functions, who wish to read/write InTouch
data from a script function that residesin aDLL

Programs written in C/C++ and Microsoft Visual Basic™

Introduction to the InTouch Extensibility Toolkit 1-3

ITEdit OLE Control

ITEdit.OCX isa32-bit control that can be used in Visua Basic or any other
OLE container that provides support for OLE controls. In Visua Basic,
InTouch data can be read and written using I TEdit. Only tagnames and access
modes need to be defined in Visual Basic. I TEdit provides an event mechanism
that responds to tagname val ue changes in InTouch and monitors whether or
not InTouch isrunning. Also, thereis no limitation on the number of
applications can access InTouch's database concurrently. ITEdit functionality is
provided viathe newly created class Cldea, which is a C++ wrapper around the
functionality provided within PTACC DLL. It provides access to these features
without having to learn the intricacies of PTACC.

Tag Access ActiveX Objects

Tag Access ActiveX objects provide devel opers using Microsoft Visual Basic's
rapid application development (RAD) tools with the ability to quickly deploy
applications that link to the InTouch runtime database. Tag Access is a set of
components for anyone planning to integrate InTouch with Visual Basic, plusa
set of utility applications and components. Because they utilize standard
ActiveX technologies, these tools are also useful in any of the Microsoft
Office™ applications as they can be used from within Visual Basic for
Applications (VBA) to expose an InTouch tag database object model. These
tools can be used to develop extensions to InTouch in a variety of ways:

Develop stand-alone applications that integrate with InTouch, such as
custom data loggers, setpoint downloading, statistical/advanced numerical
analysis, custom InTrackO clients, and so on.

Create ActiveX serversthat can be called from within the InTouch
scripting environment, allowing Visual Basic to be used for the application
scripting.

Embedded into other ActiveX controls, enabling them to be used in the
creation of custom ActiveX control objects such as special types of
animations, charts, or user interface objects that can be used in InTouch or
Visual Basic and are bound to datain the InTouch tagname dictionary.

1-4

Chapter 1

Installing the InTouch Extensibility

Toolkit

The InTouch Extensibility Toolkit software package is distributed on a compact
disc which runs on the Microsoft Windows 98 and Windows NT (4.0 or later)
operating systems. The installation program creates directories as needed, copies
files from the CD to your hard drive, and creates the InTouch icons on the Windows
Start menu.

Hardware/Software Requirements

The following hardware and software is required to use any of the components
contained in this toolkit:

IBM-compatible PC capable of running the Windows 98 or Windows NT 4.0
operating system

Memory recommendation of at least 16 MB, preferably 32 MB on Windows 98
and upwards of 64 MB to 128 MB if running on Windows NT

InTouch 7.1 (or later) for Windows 98, or InTouch 7.1 (or later) for Windows
NT 4.0 with Service Pack 5

Windows 98 or Windows NT Software Development Kit (SDK), if not using
Microsoft Visual C++

C or C++ Development Environment capable of creating Windows Dynamic
Link Libraries (DLLS). For example, Microsoft Visual C++ Version 6.0 with
Service Pack 3

Note In order to completely support wizard devel opment, we recommend the use of
Microsoft Visual C++ Version 6.0 with Service Pack 3.

Windows 98 and Windows NT
Compatibility

The InTouch Extensibility Toolkit supports both the Windows 98 and Windows NT
environments. It is possible to develop Wizards, Script functions, and IDEA support
that is compatible with Windows 98 and Windows NT. The InTouch Extensibility
Toolkit includes samples and development files that make it possible to develop
code that is common to both Windows platforms.

The toolkit user should follow Microsoft guidelines for developing Windows 98 and
Windows NT compatible source code.

InTouch Extensibility Toolkit Version 7.1 (or later) only supports devel opment of
32-hit executables (DLL or EXE) on Windows 98 and Windows NT.

Introduction to the InTouch Extensibility Toolkit 1-5

Developer Requirements

This manual is written for experienced Windows C/C++ programmers. It assumes
that you possess basic Windows application development knowledge and are
familiar with the InTouch software. The basic skills and any specific requirements
for auser of thistoolkit are briefly described as follows:

C or C++ Programming

The InTouch Extensibility Toolkit currently supports the C and C++
programming languages. The functions specifically provided in the Wizard
Toolkit API allow you to develop wizards that have the same "look and feel" as
all other InTouch objects. In order to support acommon interface for all
wizards, standard tools such as color, font and tagname sel ection dialog boxes
can be accessed from the wizard dialog boxes by simply calling Wizard Toolkit
API functions.

Basics of Windows Application Development

The devel oper must possess basic knowledge of Windows application
development such as, how to develop adialog box. Sample wizards are
provided in the Wizard Toolkit that can be used as templates when you start
your wizard development. Y ou also need to know the fundamentals of creating
aWindows DLL, since wizards are added to the InTouch environment through
the DLL mechanism.

Constructing Cellsin InTouch for Prototyping

A Wizard devel oper needs to become familiar with prototyping wizardsin
InTouch.

For more information on prototyping wizards, see Chapter 2, "Getting Started
with the Wizard Toolkit."

All of the objects (database tagnames, drawing objects and animation links)
created or manipulated with the Wizard Toolkit are objects available directly in
WindowMaker. The following briefly describes prototyping:

When the Wizard Toolkit isinstalled, the Generate Wizard command is
automatically added to the WindowMaker Special menu. (We highly recommend
that you use this command to automatically generate the code for your wizards.) By
using this command, you can prototype the wizards you create using InTouch.

To prototype awizard, you simply create the desired object in WindowM aker
(using the standard tools), associate the object to a database tagname, assign the
desired animation links, and so on, then make the object into a cell. Once the object
has been made into a cell, select the cell and then select the Generate Wizard
command. Selecting this command will create afile named WIZARD.C in your
InTouch application directory.

The WIZARD.C file contains the Windows code required to re-create that cell. This
code must be compiled and linked with the other required routines to formaDLL.
Windows standard DLLs provide the mechanism to add wizards to the InTouch
environment.

Note We recommend the latest edition of the book Programming Windows by
Charles Petzold for those unfamiliar with Windows programming.

1-6 Chapter 1

Documentation Conventions

The following conventions are used throughout this manual to define syntax:

Convention

Description

Bold Text

Italic text

CAPITALS

Courier 9

Denotes a function name, for example,
Wizard_New

Denotes a parameter value, for example,
wCommand

Indicates return type (or most return types) also
filenames and paths.

Code Exanpl es and Syntax spacing
sanpl es.

Terms Used in this Document

Term

Definition

Wizard Developer

InTouch application
developer

User

Proficient Windows C Programmer; person
developing the code for the wizard.

Person using the wizards after they have been
developed and installed in InTouch
WindowMaker.

Same as InTouch application devel oper.

2-1

CHAPTER 2

Getting Started with the Wizard
Toolkit

The Wizard Toolkit contains tools and information necessary to develop a Wizard
of any kind. The included sample source code provides a good starting point for a
Wizard developer. The Wizard Toolkit also provides the Wizard devel oper with
utilities to create individual Wizards that can be packaged for distribution with the
InTouch family of products.

Wizards are implemented by using a set of Application Programming Interfaces
(API) provided by the Wizard Toolkit. The Wizard Toolkit APl contains numerous
functions for manipulating and creating InTouch objects and database entries
including, tagnames, Access Names and Alarm Groups.

This chapter is atutorial for new Wizard developers. Its objectiveisto allow you,
the Wizard developer, to quickly familiarize yourself with the basics of Wizard
development. This tutorial will take you through the development process required
to create your first Wizard, including all of its required components. Y ou will learn
how to put multiple Wizardsin a"library," to make your Wizards configurable and
how to change the properties of your Wizards, such as blink speed, location links,
size and color links, and so on.

Contents

s What isaWizard?

= The Components of aWizard DLL

= Building a Simple Wizard

= Integrating a Wizard into WindowM aker
s Wizard Libraries

= Building a Configurable Wizard

m Specia Wizard Dialog Controls

2-2

Chapter 2

What Is

aWizard?

Before Wizards were introduced, the InTouch application devel oper created objects
on the screen by using the primitive WindowM aker tools. The developer then
double-clicked on the object to associate animation links, such as aVaue Output, a
Color Fill, or aBlink Link to the object. When desired, logic scripts were also
attached to the object for more in-depth control. The application devel oper might
then group several objects together into a cell to create a "boilerplate” that could be
used again and again. This process worked well, but it had its limitations. Wizards
can now erase those limitations and automate the entire process for the InTouch
application devel oper!

Wizards, in their most basic element, could be referred to as "smart objects’ that
make InTouch application development easier and more efficient. When using a
Wizard, you are activating a set of pre-programmed actions that can create or

mani pulate standard InTouch objects (symbols and cells), primitives (lines,
rectangles, buttons, and so on.) and database entries (tagnames, Access Names). All
the InTouch application devel oper needsto do is select and configure the Wizard --
InTouch will draw it, animate it and define it if need be!

To use aWizard, the InTouch application developer simply selects it from the
toolbar, placesit on the screen, and configuresit by double-clicking on it and
entering values into a standard Windows dialog box. For example, if the Wizard
were adlider, its configuration dialog box would include items such as the tagname,
the min. and max. range labels, the slide movement, fill color, and so on. Once this
information is entered in the dialog box and you click OK, the Wizard is redrawn
(automatically) and the slider is now ready to be used in WindowViewerQ . It's that
simple! The InTouch application developer is not responsible for drawing the
individual components that make up the slider. The developer is not responsible for
typing in the value ranges on the object. The devel oper is not responsible for
animating the object(s). It's al done automatically!

It isthe Wizard devel oper who determines what actually happens when an InTouch
application developer uses a Wizard (and makes its al seem automatic). The
Wizard developer creates a DLL file that contains the functions and procedures that
draw thelines, circles, and text necessary to create the object. WindowMaker calls
this DLL when the Wizard is selected and again when it's configured. The Wizard
DLL controls al the drawing and all the editing. The Wizard Toolkit provides over
60 API functions that may be utilized by the Wizard developer to do this.

For more information on the API functions, see Chapter 6, "Wizard AP
Reference.”

Getting Started with the Wizard Toolkit 2-3

The Components of a Wizard DLL

Wizards can vary in complexity and functionality. The simplest Wizard to createis
agraphical object that is scaleable. A complex Wizard can involve sizable text,
scripts, tagname creation, and contain properties that actually affect the extent of the
Wizard itself. All Wizards contain a minimum set of components, and therefore all
Wizard DLLs must contain a base set of functions. These base functions include
both those components necessary to make the program a Windows DLL and those
necessary to make it aWizard DLL. The following briefly describes the Windows
components.

There are usually three files that are compiled together to make up a 32-bit
Windows DLL, as shown in the following illustration:

DIIM Diaogs
Strings
WEP WIZARD.RC (Resources)
Exports
WZMAIN.C . WhoAmI?

WIZARD.DEF (Definitions)
The threefilesinclude:
WZMAIN.C Provides the DIIMain (Library's main entry point) function.
WIZARD.RC Provides resources (Dialogs, Bitmaps, and Strings).
WIZARD.DEF Defines exports (HEAPSIZE, LIBRARY, and so on).
These files provide a basic Windows DLL. Since thisisaDLL, inside the

WZMAIN.C file, we must supply aDLL entry function (DLLMain for 32-bit
Windows).

Chapter 2

The following DLLMain should be used in Windows NT (32-bit) to perform the
appropriate initialization for use with WindowM aker.

int

W NAPI

D | Mai n(HANDLE hl nst ance, DWORD ul _reason_bei ng_cal | ed,
LPVO D | pReserved)

{
switch(ul _reason_being_called) {
case DLL_PROCESS ATTACH:
/1 Initialize needed gl obals
hDr awm nst = hl nst ance;
hDrawwnd = Fi ndW ndow("Wrmk C ass", NULL);
br eak;
case DLL_THREAD ATTACH:
br eak;
case DLL_PROCESS DETACH:
br eak;
case DLL_THREAD DETACH:
br eak;
defaul t:
br eak;
}
return TRUE;
}

Next, we need to include the functions that make thisawizard DLL. To understand
these functions, we need to discuss what is going on when wizards are used by the
InTouch application devel oper while drawing in WindowM aker.

Getting Started with the Wizard Toolkit 2-5

Wizard Basics

To WindowMaker, aWizard is like any other native object (rectangle, ellipse, line,
and so on) in that the application developer will want to place it on awindow, size
it, animate it, and click on Undo to correct a mistake made with it. The difference
between a native object and a Wizard is that instead of WindowMaker actually
doing these things, WindowMaker will call the Wizard DLL to do them. To support
these operations, the Wizard devel oper must provide specific functions within the

Wizard DLL.
In general, WindowM aker will expect the following services (Modes) from the
Wizard DLL:
Mode Application Developer Action
NEW Placed a new Wizard on the window.
SIZE Dragged the handles on the Wizard to resize it, either bigger
or smaller.
EDIT Double-clicked on the Wizard to make changesin its
appearance or the way it was animated.
RESTORE Selected the Undo command on the Edit menu to reverse

the last action performed on the Wizard.

In addition, WindowM aker will also expect the Wizard DLL to provide descriptive
information about the Wizard (bitmap pictures, text descriptions, version numbers,
and so on). WindowMaker then uses thisinformation in its Wizard Selection
Dialogs and Wonderware LoggerO entries. The Wizard DLL accommodates
information requests by providing functions that support certain information
commands. Examples of these are listed in the following table:

Note Thisis not acomplete list of the information commands that the Wizard will
need to support. Thelist isincluded here only as an example. The exact details are
covered later in the manual.

Information Command Description

WIZ_DESCRIPTION Long Description and Short Comment that are
used in the Wizard Selection Dialog and the
Toolbox.

WIZ_BITMAP Large (64x64) bitmap that is used in the Wizard
Selection Dialog.

WIZ_TBOXBITMAP Small (16x16) bitmaps to be used when creating
abutton for the Wizard in the toolbar.

WIZ_GROUPNAME Name of the group in the Wizard Selection

Dialog where the Wizard will reside.
WIZ_FLAGS An indicator of what type of Wizard thisis.

2-6

Chapter 2

To support the Modes and Information Commands, atypical Wizard DLL is
structured as follows:

_ NEW
Information

WindowMaker Wizard-New

1. 2.
WIZARD.C
Wizard-GetInfo BITMAP
\\
WizardLib-Getinfo STRINGTABLE

DIlIMain WIZARD.RC
LINKER INFO
WZMAIN.C
WIZARD.DEF

1. When WindowMaker needs to retrieve information about the Wizard (bitmaps,
descriptions, help files, and so on.) it will call one of two specific functionsin
the Wizard DLL; Wizard_Getlnfo or WizardLib_Getlnfo. WindowM aker
then passes the particular Information Command it islooking for to the Wizard.
(These Information Commands include those in the list previously discussed.
For example, WIZ_DESCRIPTION, WIZ_BITMAP.) The Wizard developer
needs to provide the Wizar d_GetInfo and WizardLib_GetInfo functions, and
place these in the WZMAIN.C file.

Wizard_GetInfo and WizardLib_Getlnfo will then load bitmaps or strings
from the Wizard DLL's resources (specified in the WIZARD.RC file).

2. When the InTouch application devel oper selects a particular Wizard from the
toolbar and places it in awindow, WindowMaker considers this Wizard to be
in the NEW mode. To handle the processing of a NEW mode Wizard,
WindowMaker calls the Wizard_New function in the Wizard DLL.
Wizard_New isthen responsible for "drawing" and "placing” the Wizard in the
window. Wizard_New may include the Wizard API routines that actually
"draw" the Wizard or it may dispatch another routine to do it.

Getting Started with the Wizard Toolkit 2-7

When the InTouch application devel oper resizes a Wizard, WindowM aker
considers this Wizard to be in the SIZE mode. To handle the processing of a SIZE
mode Wizard, WindowMaker will again call the Wizard_New function.
Wizard_New in this caseis responsible for redrawing the Wizard at the new size or
dispatching aroutine to sizeit. The Wizard developer is responsible for providing
the Wizard_New function (and the dispatching routines). This function will
normally be placed in afile called WIZARD.C. The dispatch routines (if they exist)
would normally reside in separate source files.

For more information on dispatching, see the "Creating Libraries with Multiple
Wizards' later in this chapter.

Note The Wizard developer does not have to write al the Wizard_New drawing
code from scratch. Once the InTouch Extensibility Toolkit has been installed on the
developer's PC, a new menu command, Gener ate Wizard, will automatically be
added to the WindowMaker Special menu. By using this command, the Wizard
developer can select acell in WindowMaker then invoke the command to
automatically generate the code. WindowMaker will create the WIZARD.C file and
put aWizard_New functioninside.

We strongly recommend before you begin developing Wizards, that you take the
time to familiarize yourself with Wizard naming conventions. It is not mandatory
that you follow these guidelines, but putting them into practice will make it easier to
maintain and properly organize your Wizard libraries.

For information on Wizard naming conventions, see Chapter 5, "Style Guide
for Wizard Library Development.”

Simple Wizard .DEF File Example

Now that we have diagrammed what a simple Wizard DLL looks like, we can create
our WIZARD.DEF definition file. The definition file contains information about the
library, and, most importantly, the names of any Windows routines that must be
exported. (Any routine that is called from outside the DLL must be in the export
section.) Inthe case of aWizard DLL, the functions that must be exported are those
that are called from WindowMaker, like Wizard_New, Wizard_Getlnfo, and
WizardLib_Getlnfo.

LI BRARY wzsanpl e
DESCRI PTI ON ' W ZARD Tool kit Sanple DLL'

EXPORTS
W zar d_New
W zard_GCetlInfo
W zardLi b_GetInfo

2-8 Chapter 2

Building a Simple Wizard

In this section, we are going to develop a simple Wizard and see how all of the
pieces fit together. The simplest Wizard to create is a scaleable object with no text.
Let's start prototyping our Wizard in InTouch by creating an object.

1.

Start WindowM aker and create a new window by selecting the New Window
command on the File menu.

Draw arounded-rectangle using the standard WindowMaker tool.

Double-click on the object to access the animation links selection dialog box.
Click on the Blink button in the Miscellaneous section to assign ablink link to
the object. The Object Blinking -> Discrete Value dialog box will appear.

Enter a Discrete tagname in the Expression - Blink When field and then click
OK.

Transfer to WindowViewer and change the value of Discrete to make sure the
object is functioning as we would expect it to. Then switch back to
WindowM aker.

Select the object again and then, on the Arrange menu, select M ake Cell to
turn the object into acell:

With the cell still selected, on the Special menu, select Generate Wizard to
automatically generate the code for the Wizard.

The generated code is now contained in the WIZARD.C file. The WIZARD.C file,
along with the other files provided in the Wizard Toolkit, will be the basis for our
simple Wizard.

Getting Started with the Wizard Toolkit 2-9

WIZARD.C File

When you select the Gener ate Wizard command on the Special menu, the C code
for the Wizard_New function is automatically written to the WIZARD.C filein
your InTouch application directory. The WIZARD.C file contains only the code
necessary to re-create that cell. This code must be compiled and linked with the
other required functions to make a Wizard DLL.

Note The other routines that are required to link with WIZARD.C are contained in
the WZMAIN.C, WIZARD.RC, and WIZARD.DEF. Thesefiles are diagrammed in
the previous section, "The Components of aWizard DLL."

For more information on these routines, see the next section, "Integrating a Wizard
into WindowM aker."

Our example Wizard_New routine first calls WWAKit_Init to initialize the Wizard
library. Then the code sets the pens and brushes that will be used in drawing the
object, sets any animation links that were assigned to the InTouch cell, and draws
the object. All of these actions are performed by the Wizard API. (The Windows
GDI routines are not used.)

#i ncl ude <w ndows. h>

#i ncl ude "wi zapi . h"

#i ncl ude "wi zstub. h"

int FAR PASCAL W zard_New(
HCHUNK hChunk,

int i ndex,
int left,
int t op,
int right,
int bot t om

LPSTR dl | Nane,

VWHAVEM whDat a,

int node,

RECT prevRect,

VWHVEM FAR *pwhW zar d)

WHVEM whHLOoj ;
VWHVEM whQbj ;

RECT ol dRect ;
RECT newRect ;

WAKit _Init();
Set Rect (&ol dRect, 419, 19, 581, 91);

if(left == right & top == bottom) {
right = left + oldRect.right - ol dRect.left;
bottom = top + ol dRect. bottom - ol dRect .t op;

}

Set Rect (&newRect, left, top, right, bottom;

whHLGbj = W zardObj _New(hChunk, (WHMEM) 0, left, top,
right, bottom dlI Nane, index, whData);

wi zPen. | opnStyl e = 0;
wi zPen. | opnW dt h. x = 1;
wi zPen. | opnWdth.y = 1;

Cont i nued

2-10 Chapter 2

wi zPen. | opnCol or = RGB(0x00, 0x00, 0x00);
WAKi t _Set Pen(&wi zPen);

Wi zBrush. | bStyle = 0;

wi zBrush. | bCol or = RGB(Oxff, Oxff, Oxff);

w zBrush. | bHat ch = 4;

WAKi t _Set Brush(&wi zBrush);

Set Rect (& npRect1, 420, 20, 580, 90);
Rect _Scal e(& npRectl1, &ol dRect, &newRect, 0);

whObj = RRectangl eObj _New(hChunk, whHLObj,
tnpRect1.left, tnpRectl.top, tnpRectl.right,
t npRect 1. bottom 20, 20);

| strcpy(parseBuf, "Discrete");

Bl i nkLnk_New(hChunk, whCbj, parseBuf, FALSE,
RGB(0x00, 0x00, 0x00), RGB(0x00, 0x80, 0x40),
RGB(0x00, 0x00, 0x00), BLINK_MEDI UM);

*pwhW zard = whHLObj ;
return O;

}

For more information on the functions used in the code sample, see the "Wizard
Toolkit Functions" section of Chapter 3.

Getting Started with the Wizard Toolkit 2-11

Globals

Declarations for the following globals are provided in a special header file called
WIZSTUB.H. They are used by the generated routines and provide useful structures
and variables when building non-generated Wizards. The initialization for these
global variablesis often done in WZMAIN.C or in a extra add-on source file named
WZSTUB.C. For our simple Wizard, the globals would be as follows:

#i ncl ude <wi ndows. h>
#i ncl ude "w zbase. h"

/1 dobals for w zard di al ogs and access to resources

HANDLE hDr awi nst (HANDLE) NULL;

HWND hDr awmnd (HND) NULL;
/1 General purpose globals
VWHVEM whNul | = (WHVEM O;
/1 dobals for object creation/manipul ation
HANDLE hBi t map;
char t npBuf [132] ;
PO NT t mpPt 1;
PO NT t mpPt 2;
PO NT t npPt s[32] ;
RECT t npRect 1;
RECT t npRect 2;
LOGFONT w zFont = { 10, 0, 0, 0, FWNORMAL, O, O,
0,
ANSI _CHARSET, QUT_STROKE_PRECI S, CLI P_STROKE_PRECI S,
DRAFT_QUALI TY, DEFAULT_PI TCH FF_SWSS, "Arial" };
LOGBRUSH wi zBrush = { BS_SOLI D, RGB(O0xff,
oxff, Oxff),
HS_CRCSS };
LOGPEN wi zPen ={ Ps.salb {1, 11}, OL };

LOGBRUSH wi zText Brush= { BS_SOLI D, RGB(Oxff, Oxff,
oxff), HS_CROCSS };

LOGPEN wizTextPen ={ PS SOLID, { 1, 1}, OL };
/1l dobals for link creation/nanipul ation

int error Col ;

char parseBuf [STMI_STRLEN];
EXPR st nt Down;

EXPR st nt Up;

EXPR stnt Wi | e;

LONG t npCol ors[5] ;

REAL t npVal ues|[4] ;

2-12 Chapter 2

Integrating a Wizard into
WindowMaker

Once we have created our simple Wizard and generated the WIZARD.C file, we are
ready to integrate it into afull Wizard DLL. Before we can do this we need to

supply:

e A Bitmap for the Wizard Selection dialog box

e Bitmaps for the WindowMaker toolbar

e A group description

e Information regarding sizing of the Wizard

e Information regarding what environment our Wizard operatesin

WindowMaker will get thisinformation by calling the DLL's Wizard_Getlnfo
function several times. (If there is nothing to return, Wizard_Getlnfo can return
zero and the defaults will be assumed.)

The function prototype for Wizard_GetInfo is the following:

BOOL W NAPI W zard_Get | nfo(
int i ndex,
WORD wConmand,
DWORD dwDat a,
LPVO D | plnfo)

For more information on this function, see the "User Supplied Wizard Functions'
section of Chapter 4.

The following briefly describes each parameter:

Parameter Description

index Refersto the index number of a particular
Wizard in alibrary. For our simple Wizard
thiswill be 1.

wCommand Specifies which property WindowMaker is

requesting information about. Thisisthe
Information Command described in "The
Components of aWizard DLL" section.

dwData This DWORD may contain additional data
that is required for the information request.
Iplnfo Pointer to the returned data.

Wizard_GetlInfo provides the information
back to WindowMaker by attaching this
pointer to it.

The wCommand parameter specifies which property is being requested. Through
this one function, WindowMaker will request bitmap handles, description strings,
environment information, sizing information and so on.

Getting Started with the Wizard Toolkit 2-13

The values requested in wCommand and the required actions are:
Command Required Action

WIZ_DESCRIPTION Returns either the Long Description or the
Short Comment description string, based on
the value of the dwData parameter which was

passed in.

WIZ_BITMAP Returns the main Wizard Selection Dialog
bitmap.

WIZ_TBOXBITMAP Returns either the Toolbox Button Down or

the Toolbox Button Up bitmap, based on the
value of the dwData parameter which was
passed in.

WIZ_GROUPNAME Returns the string name of the Wizard
Selection Dialog group where this Wizards
will appear.

WIZ_FLAGS Returns a flag indicating what type of
Wizardsthisis.

WIZ_SIZEMODE Returns a flag indicating what sizing
restrictions there are (if any) on this Wizard.

For more information on these commands, see the "Functions Required to Integrate
Wizards into InTouch" section of Chapter 4.

To supply bitmaps for the Wizard, there are three bitmaps needed:

e 64x64 bitmap for the Wizard Selection Dialog

e 16x16 bitmap for the WindowMaker toolbar when the button is up
e 16x16 bitmap for WindowM aker toolbar when the button is pressed

Note The pair of bitmaps used in the WindowM aker toolbar must be identical,
except the fill for the button up should be "buttonface” gray and the fill for the
button down (pressed) should be white. (WindowMaker will automatically create
the 3-D border.) The bitmap you provide should also not be shifted over and down.
WindowMaker will handle the "pressed down" effect automatically when the button
is depressed.

2-14 Chapter 2

Wizard GetIinfo Example

For our simple Wizard, the Wizard_Getl nfo function would be;

/*
** W zard_Get | nf o:

* %

* Handl es calls to get information about a Wzard.

* %

*x | nput s:

*x i ndex - used only if we are

*x inmplementing a wizard library in which
* case this is our internal wzard id.
*x wComand - WORD speci fying information comrand

*x dwbDat a - DWORD passing data to needed to get

* info

* %

*x Cut put s:

*x I plnfo - points to the returned information
* buf fer
*x Ret urns:
*x TRUE if the command is supported by the DLL.
*x FALSE al so indicates to do default handling.
*/
BOOL
W NAPI
W zard_GCet | nf o(
int i ndex,
WORD wCommand,
DWORD dwbat a,
LPVO D I plnfo)
{
char nane[128] ;
BOOL bResult = TRUE;

switch(wCommand) {
case W Z DESCRI PTI ON:
if((BOOL)dwbata) {
LoadString(hDraw nst, index * 2 - 1, |plnfo,
MAX_STRI NG _LEN);

} else {
LoadString(hDrawi nst, index * 2, |plnfo,
MAX_STRI NG _LEN);
}

br eak;
case W Z Bl TVAP:
wsprintf(name, "RRECT% 2dMBMP", index);
(HBI TMAP FAR) | pl nfo = LoadBit map(hDraw nst,
(LPSTR) nane);
br eak;
case W Z_ TBOXBI TVAP:
if(((LP_W ZTBOXBI TMAPI NFO) dwDat a) - >bPushed) {
wsprintf(name, "RRECT% 2dPBMP", index);
} else {
wsprintf(name, "RRECT% 2dTBMP", index);

}
(HBI TMAP FAR) | pl nfo = LoadBit map(hDraw nst,
(LPSTR) nane);
br eak;
case W Z_ GROUPNANE:
I strcpy(| plnfo, "Rounded Rectangles");
br eak;
conti nued

Getting Started with the Wizard Toolkit 2-15

case WZ HELPI NFO
bResult = FALSE;
br eak;

case WZ FLAGS:
*(LPDWORD) | pl nfo
br eak;

case W Z_ S| ZEMODE:

0; /1 No special flags

*(LPDWORD) | pl nfo = W ZSI ZE_FULL;
br eak;
defaul t:
bResult = FALSE;
br eak;

let urn(bResult);
}

WizardLib_GetIinfo Example

Since Wizardsreside in libraries, there is some additional information that needs to
be supplied. WindowMaker will retrieve this information by calling the
WizardLib_GetInfo function. WizardLib_GetInfo is similar to Wizard_Getl nfo,
inthat it is passed commands for which specific information needs to be returned.
These items relate to the Wizard Library in general.

The function prototypeis as follows:

BOOL
W NAPI
W zar dLi b_Get | nf o
WORD wComrand,
DWORD dwDat a,
LPVO D | pl nf 0)
The following briefly describes each parameter:
Parameter Description
wCommand Specifies which property it is requesting

information about. Thisis an Information
Command described in "The Components of
aWizard DLL" section.

dwData This DWORD may contain additional data
that is required for the information request.
Iplnfo Pointer to the returned data.

WizardLib_Getlnfo provides the
information back to WindowMaker by
attaching this pointer to it.

The values requested in wCommand and the required actions are:

Command Required Action
WIZ_COMPANYNAME Returns company description string.
WIZ_LIBNAME Returns library descriptive name.
WIZ_NEXTWIZID Returns next Wizard ID. WindowM aker will

make multiple calls for this command,
building for itself alist of the Wizard IDs
contained in particular Wizard DLL

WIZ_VERSIONNUM Returns library version number.
WIZ_VERSIONSTR Returns library version string.

2-16

Chapter 2

For our simple Wizard, the WizardLib_Getlnfo would be:
/*
* W zar dLi b_Get I nf o:

* %

*x Handl es calls to get information about this
*x wi zard library.
*x I nput s:
* wConmand - WORD specifying information
* commrand
*x dwbDat a - DWORD passing data to needed
*x to get info
*x CQut put s:
o I pl nfo - points to the returned
ok information buffer
*x Ret ur ns:
*x TRUE if the command is supported by the DLL.
** FALSE al so indicates to do default handling.
*/
BOOL
W NAPI
W zar dLi b_Get | nf o(
WORD wConmand,
DWORD dwbDat a,
LPVO D I plnfo)
{
BOOL bResult = TRUE;

switch(wCommand) {

case W Z_COVPANYNAME:
Istrcpy(| plnfo, "Wonderware Corporation");
br eak;

case W Z_VERSI ONNUM
*(LPDWORD) | pl nf o
br eak;

case W Z_VERSI ONSTR:
Istrcpy(Iplnfo, "Version 5.0 ");
br eak;

case W Z_LI BNAMVE:

0;

I'strcpy(Iplnfo, "Wnderware sanple rounded rectangle

W zards");
br eak;
case WZ_NEXTWZID: // how many w zards in library
if(dwbata == 0)

*(LPDWORD) | pl nfo = 1; /] start of w zards
}
else if(dwbata >= 2)
*(LPDWORD) | pl nfo = 0; /] indicates |last w zard
el se {
*(LPDWORD) | pl nfo = dwbata + 1;
br eak;
defaul t:
bResult = FALSE;
br eak;

return(bResult);

Getting Started with the Wizard Toolkit 2-17

Simple Wizard .RC File Example

Now that we've provided a mechanism for WindowMaker to load bitmaps, we must
provide alink to the actual BMPfiles. It is the resource file (.RC file) that contains
references to the bitmaps that we'll use. It also contains strings and dialog boxes that
well use later. For the simple Wizard, the resource file simply contains references
to our bitmaps. For example:

#i ncl ude "w ndows. h"

RRECTO1TBMP BI TMAP MOVEABLE PURE " RRECTO1T. BMP"
RRECTO1PBMP BI TMAP MOVEABLE PURE " RRECTO1P. BMP"
RRECTO1MBMP Bl TMAP DI SCARDABLE " RRECTO1M BMWP"

Building the Wizard DLL

We are now ready to build the Wizard DLL that WindowMaker calls whenever the
Wizard is used. To build the Wizard DLL, start with the sample project makefile
that is supplied with the Wizard Toolkit. (This makefile was created using Visua
C++ and is designed for building DLLS.):

e Select the Edit command on the Project menu to edit the project file to include
the source files that we have created while building our sample Wizard

e Regenerate dependencies (happens automatically)

e Select the Build command or the Rebuild command on the Project menu to
compile and link the new DLL

Installing the Wizard in WindowMaker

Once the Wizard DLL isbuilt, you can install the Wizard in WindowM aker by
performing the following steps:

1. Copy the Wizard DLL into your InTouch directory.

2. Change the filename extension from .DLL to .WZU. (The .WZU extension
indicates to WindowMaker that thisis an Uninstalled Wizard.)

3. Onthe WindowMaker Special menu, select Configur e and then select
Wizard/ActiveX Installation. The Wizard I nstallation dialog box will

appear.
4. Click Install toinstall the Wizard DLL in WindowMaker. The Wizard is now
available from the Wizard Selection Tool @ in the WindowM aker toolbar.

Note WindowMaker will automatically change the .WZU extension to .DLL. If you
copy the Wizard DLL file directly into your InTouch application directory with the
extension .DLL, it will not work! It must be installed using the method described
here in order to work properly! If you change the name, order, or number of
functions/wizards in the library, then you must use the Wizard I nstallation dialog
box to remove the old wizard, and then add the new one. Otherwise, a GPF will
occur.

2-18

Chapter 2

Wizard Libraries

Now that we have developed our first Wizard and used it in WindowM aker, the
basics of Wizard Development is now hopefully alot clearer: Wizard developers
create Wizard DLLs; Wizard DLLs provide functions that WindowMaker can call;
WindowMaker calls these functions when InTouch devel opers want to use the
Wizard.

Having only one Wizard in our DLL is pretty limiting. That would mean that for
every new Wizard that we want to develop, it would be necessary to write al the
code that we wrote in the previous section over and over again, Wizard_New,
Wizard_Getlnfo, and so on. But that is not necessary. Wizard DLLs can contain
multiple Wizards which can share these functions. Our Wizard DLL isthen referred
to asaWizard Library, and Wizards are treated as individual entriesin these
libraries. In this next section, we'll examine the issues surrounding Wizard
Libraries.

Note The examples from now on, including those in the next section involving
building configurable wizards are based upon Wizard Libraries. Almost all Wizards
are contained in libraries, and so it is very important to understand the concepts
introduced in this section

Normally, aWizard DLL will contain multiple wizards that are related in some way.
Building aWizard Library like thisinvolves alittle planning, particularly in the area
of naming conventions, which is discussed here as well. Building a Wizard Library
correctly from the start will make it very easy to expand later.

Getting Started with the Wizard Toolkit 2-19

Creating Libraries with Multiple Wizards

To support multiple Wizards, atypical Wizard DLL is structured as follows:

Information
WindowMaker RRect01-New
NEW
RRECTO1.C
Wizard-New RRect02-New
RRECTO02.C
Wizard-GetInfo BITMAP
T~ STRINGTABLE
WizardLib-GetInfo
RRECT.RC
DIIMain
WZMAIN.C

When an InTouch application developer selects a Wizard from the toolbar and
placesit in awindow, WindowMaker considers this Wizard to bein the NEW
mode. To handle the processing of a NEW mode Wizard, WindowMaker calls
Wizard_New inthe Wizard DLL. Thisisthe same action that occurs with a Wizard
DLL that contains only one Wizard.

When the DLL contains multiple Wizards, Wizard_New will dispatch other
routines, RRectO1New or RRectO2New (depending upon the particular Wizard), to
handl e the actual drawing and resizing. The index parameter passed to
Wizard_New specifieswhich Wizard in the library is about to be created, and
which dispatch function is to be called. Upon completion, these dispatched
functions pass control back to Wizard_New which gives control back to
WindowMaker.

2-20

Chapter 2

The body of the code (that used to bein Wizard_New) is now RRectO1New.
RRectO1New is called from Wizard_New when a Wizard with index number one
is about to be created. For example:

int FAR PASCAL W zard_New(
HCHUNK hChunk,
int i ndex,
int left,
int t op,
int right,
int bot t om
LPSTR dl | Nane,
VWHVEM whDat a,
int node,
RECT prevRect,
VWHVEM FAR *pwhW zar d)

int error;
error = 0;
switch(index) {

case 1:
error = RRect 01New(hChunk, index, left, top, right,
bottom dl I Nane, whData, node, prevRect,
pwhW zard);
br eak;

case 2:
error = RRect 02New(hChunk, index, left, top, right,
bottom dl I Nane, whData, node, prevRect,
pwhW zard);
br eak;

defaul t:
*pwhW zard = whNul | ;
error = 1;
br eak;

}

return(error);

The remaining changes to a Wizard DLL (to accommodate multiple Wizards) arein
the Wizard_GetInfo and WizardLib_GetInfo functions. The templates that we
used in the earlier examples for these routines are already set up to accommodate
multiple Wizardsin alibrary. If we follow afew simple naming conventions, these
functions become generic and can easily handle Wizard libraries with any number
of Wizards.

Getting Started with the Wizard Toolkit 2-21

Naming Conventions

The basis of all the namesin your Wizard Library should be a simple mnemonic
that categorizes the type of Wizardsin the library. For example, METER. The
library name is followed by a unique two-digit number to identify the individual
Wizard in the library. For example, name all bitmap files using the following

convention:
BITMAPS: M
(index)
__ (ibrary) P _BMP METEROIM.BMP
METEROLT.BMP
- METERO1P.BMP

The"M" extension is for the (M)ain Wizard Selection dialog box bitmap, the " T"
extension is for the (T)oolbar Button Down bitmap, and the "P* extension is for the
Toolbar Button (P)ushed-1n bitmap.

Name each bitmap resource (in the project's RC file) the same as the filename,
without the period (.). For example, the bitmap resources for the bitmapsin the
example would be listed as follows:

For example:

VETERO1NMVBMP Bl TVAP MOVEABLE PURE
"METERO1M BMP"

VETERO1TBMP Bl TVAP MOVEABLE PURE
"METERO1T. BMP"

VETERO1PBMP Bl TVAP MOVEABLE PURE
"METERO1P. BMP"

We recommend that all Wizard descriptions reside in the STRINGTABLE for the
Wizard library. The string table identifier for each Wizard is generated using the
following formula:

Long Description (index) * 2 - 1
Short Description (index) * 2

Using this formula, a description string table can be constructed for alibrary of
three meter Wizards:

STRI NGTABLE

BEG N

1, "Meter 1 Long Description”
2, "Meter 1 Short Description”
3, "Meter 2 Long Description”
4, "Meter 2 Short Description”
5, "Meter 3 Long Description”
6, "Meter 3 Short Description”
END

2-22 Chapter 2

Building a Configurable Wizard

Therea power of Wizardsliesin the ability of the InTouch application devel oper
to change the characteristics of the Wizard to suit the particular application being
built. In our previous examples, we created a Wizard that was sizable with
predetermined animation links. In most cases, a Wizard will have certain
characteristics (or properties), such asfonts, location links, size links, color links,
and so on, that the application developer can choose when using the Wizard. The
Wizard devel oper provides this configurability when writing the Wizard.

Thereis no pre-determined set of properties that the Wizard devel oper must use. A
Meter Wizard may allow the application developer to configure the number of tick
marks, the range, and the label color. A Command push button Wizard may allow
the application devel oper to configure the text on the button and the script
associated with the button. All of the animation links that are available in the
WindowMaker links dialog box can be exposed as configurable properties to the
Wizard user. It is up to the Wizard devel oper to determine the properties of the
InTouch object that should be configured. If desired, certain properties can even be
selected from the WindowM aker toolbar while drawing the object.

When an InTouch application developer double-clicks on a Wizard for
configuration, the Wizard DLL that originally drew the Wizard will display adialog
box. This dialog box allows the InTouch application developer to configure the
Wizard. The Wizard DLL then takes the application developer's dialog box entries
and stores them with the Wizard as "Wizard Properties.”

A property is defined and set by the Wizard developer via the WizProp_Set*
functions. For example, if we allow the InTouch application developer to configure
the expression associated with the blink link for the simple Wizard we previously
created, we would need to define a property, give it a name, and store the
application devel oper's choice as the value of this property. All of thisis called by
WindowMaker and happens in a specia routine called Wizard_Edit. Every time
the application developer double-clicks on the Wizard, WindowMaker will call
Wizard_Edit.

Getting Started with the Wizard Toolkit

2-23

To support the configuration, atypical Wizard DLL is structured as follows:

EDIT
WindowMaker
1.

EDIT 5.

RRect01-New

/

Wizard-New

RRECTO1.C

RRect02-New

RRECTO02.C

Wizard-Edit

Wizard-GetInfo

WizardLib-GetInfo

DIIMain

RRectADIgProc

RRECTA.C

WZMAIN.C

DIALOG

RRECT.RC

1. When WindowMaker gets asignal from an application devel oper to configure a
Wizard (double-clicks on the Wizard), WindowMaker will call Wizard_Edit.
The Wizard devel oper needs to provide the Wizard_Edit and placeit in the

WZMAIN.C or DLLMAIN.Cfile.

2. Wizard_Edit then calsthe DialogBox() function to create a dialog box and
call adialog procedure, RRectADIgProc. Thiswill effectively "hand over"
control to Windows, which will call RRectADIgProc.

3. Thediaog box and the dialog procedure, RRectADIgProc will alow the
application developer to modify and save the properties of the Wizard.
Windows passes messages to the RRectADIgPr oc as the application devel oper

interacts with the dialog box.

2-24

Chapter 2

4. Once the application developer clicks OK in the dialog box, RRectADIgProc
will save the properties and return control to Windows. Windows then returns
to Wizard_Edit. Wizard_Edit then returns control to WindowMaker. The
Wizard devel oper needs to provide the toolbar and RRectADIgProc. The
toolbar resource is placed in the resource (RC) file. RRectADIgProc is
normally placed in afile by itself, in this case RRECTA.C

5. After the EDIT mode call to Wizard_Edit is completed, WindowMaker will
automatically make an EDIT mode call to Wizard_New so that the DLL can
take advantage of the modified properties to redraw the Wizard. In this case,
Wizard_New will dispatch to either RRectO1New or RRectO2New to retrieve
the new properties (saved by RRectADIgProc) and redraw.

Wizard Edit Example

The Wizard_Edit routine is similar to the Wizard_New routine in that it usesthe
index parameter to decide which Wizard to edit. Wizard_Edit creates a dialog box
and calls adialog procedure. The dialog procedure allows the application devel oper
to modify and save the properties of the Wizard. The following Wizard_Edit
routine will create a dialog box from the resource "RRECTADLG" and call adialog
procedure, RRectADIgProc. Notice that the dialog procedure and dialog box do
not have to be associated with only one Wizard. It's possible that several Wizardsin
the DLL will be similar enough that their properties can be configured with same
dialog box. For example:

/ *

*x W zard_Edit:

* %

* Brings up dialog box to edit the Wzard's
*x configuration.

*x Modi fy/edit Wzard properties as appropriate and
*x save

o if user selects K

*x Abandon changes if user selects Cancel.

* %

o Process:

* 1. Initialize globals needed to remenber Wzard
*x bei ng edited.

* 2. Bring up the dial og.

* %

*x I nput s:

*x whhj - wizard's object handle

*x hChunk - nmenory allocation handle

* %

*x Qut put s:

*x None

* %

*x Ret ur ns:

*x error code or O if no error.

*/

conti nued

Getting Started with the Wizard Toolkit 2-25

int
W NAPI
W zard_Edit (
int i ndex,

VVHVEM whQoj ,
HCHUNK hChunk)

edi t bj
edi t Chunk
edi tl ndex = index;
switch (index) {

case 1:
case 2:
Di al ogBox (hDraw nst, "RRECTADLG', hDrawwhd,
RRect ADI gProc);
br eak;

defaul t:
br eak;
}

return FALSE;
}

Property Names

In the next example, we have decided to allow the application developer to
configure the blink expression associated with the rounded rectangle object.
However, before we can do that, we have to discuss one aspect of adding
configurability to Wizards that has not been mentioned so far. That is property
names. When giving a Wizard a characteristic or property that the application
developer can configure, the Wizard developer also must determine a name for this
property. This property name isatext string that is used to associate a given
property with the Wizard. This property name will then be used asan ID or label
for retrieving and storing the value of the property. A table containing each property
name and its current value will also be stored with the Wizard.

The name of our property will be "BlinkExpression.” 1t will be specified in our
code by the constant PROP_RRECTA_BLINKEXPR, which is #defined in one of
our header files.

2-26

Chapter 2

Dialog Proc Example

In our example the property will be an InTouch expression, therefore we will use
the WizProp_SetExpr and WizProp_GetExpr functions to update and read the
value of our property. Making the property an expression (versus a String) alows us
to use the Substitute Tags command on the WindowMaker Special menu on our
Wizard. The dialog procedureis as follows:

/*
* %
* %
* %
* %
* %
* %
* %
* %

*/

RRect ADI gPr oc:

Handl es our w zard's dial og.

I nputs:

Std Wndow s di al og procedure inputs.

CQut put s:

None

Ret ur ns:

Std Wndow s di al og procedure return.

/1 dobals for editing purposes used by our dial og.

extern VWHVEM edi t Obj ;
ext ern HCHUNK edi t Chunk;

extern int edi t | ndex;
BOOL
W NAPI
RRect ADI gProc (
HWAD hDl g,
int message,
WPARAM wPar am
LPARAM | Par am
{
RECT rect;
char t ext [NL_EXPRESSI QN ;

SW t
case

ch (nmessage) {
VWM_I NI TDI ALCG:
/* Center the dialog */
Get W ndowRect (hDi g, &rect);
MoveW ndow (hDl g,
(CGet Systemvetrics (SM_CXSCREEN) -
(rect.right - rect.left)) / 2,
(CGet Systemvetrics (SM_CYSCREEN) -
(rect.bottom- rect.top)) / 2,
rect.right - rect.left,
rect.bottom- rect.top, FALSE);
/* Limt the nunber of characters in the blink
* expression control
*/
SendMessage (GetDi gltem (hDl g, | D_RRECTA_BLI NKEXPR),
EM LI M TTEXT, NL_EXPRESSION - 1, 0);
/* Get properties and initialize dialog fields */

conti nued

Getting Started with the Wizard Toolkit 2-27

W zProp_Get Expr (editChunk, editObj,
PROP_RRECTA_BLI NKEXPR, NL_EXPRESSI ON, text,
def Bl i nkExpr Nane) ;

Set Dl gltenText (hDl g, | D RRECT_BLI NKEXPR, text);

WADI g_Regi st er TagNameCt r| (hDl g,
I D_RRECTA_BLI NKEXPR) ;
SendMessage(GetDigltem(hD g, | D RRECTA BLI NKEXPR),
EM SETSEL, 0, MAKELONQE 0, 32767));
Set Focus(GetDigltem(hDi g, | D _RRECTA BLI NKEXPR));

return FALSE;

case W COMVAND:
switch (LOAMORD (wParam)) {
case | DCANCEL:
WADI g_Unr egi st er TagNaneCtrl (hDl g,
| D_RRECTA BLI NKEXPR) ;
EndDi al og (hD g, 0);
return (TRUE);

case | DOK:
if(WA g_CheckExprCrl(hD g,
| D_RRECTA BLI NKEXPR,
TYPE_DI SCRETE)) {
return TRUE;

} else {

WADI g_Unr egi st er TagNaneCtrl (hDl g,
I D_RRECTA_BLI NKEXPR) ;

WADI g_Unregi sterColorCrl (hD g,
| D_RRECTA_ONCOLOR, &dwbData);

W zProp_Set DWord(edi t Chunk, editQbj,
PROP_RRECTA_ONCOLOR, dwbData);

dwDat a = DEF_OFF_COLOR;

Get Dl gl tenText (hDl g, | D_RRECTA BLI NKEXPR,

text, NL_TAGNAME);
text[NL_TAGNAME-1] = "\ 0'";
W zProp_Set String(editChunk, editQj,
PROP_RRECTA_BLI NKEXPR, text);

}

EndDi al og(hDig, 0);
return(TRUE);

defaul t:
return FALSE;

}
return TRUE;

defaul t:
return FALSE;

}
return (TRUE);

2-28

Chapter 2

In the WM _INITDIALOG message processing, the function WizProp_GetExpr
retrieves either the current value of the property named
PROP_RRECTA_BLINKEXPR or adefault value defBlinkExprName, if the
property does not currently exist (has not been set yet). In this example, the property
name PROP_RRECTA_BLINKEXPR and default value defBlinkExprName have
been defined as follows:

#defi ne PROP_RRECTA BLI NKEXPR rrectBlinkExprStr
LPSTR rrect Bl i nkExprStr = "Bl i nkExpressi on";

LPSTR def Bl i nkExpr Name = "?d: Di screte";

When OK s clicked, the contents of the edit control for the blink expression is read
and stored in the Wizard as the property named PROP_RRECTA_BLINKEXPR,
viathe WizProp_SetExpr function. Once the WizProp_SetExpr function has been
executed, our Wizard will have a property of name PROP_RRECTA_BLINKEXPR
and avalue as specified by the user.

Now that we have built aWizard_Edit routine that calls adialog procedure and the
dialog procedure sets the property, where do we go from here? After Wizard_Edit
returns, Wizard_New will be called by WindowMaker to create an object with the
new value of any properties modified by Wizard_Edit.

Wizard_New calls RRectO1New to draw the object and configure any links. The
RRect0O1New routine needs to set up the blink link from the property (as opposed to
the predefined code that was generated from the Generate Wizard command). In
the original routine, the parameter for the blink expression on the BlinkL nk_New
function was hard coded to be the expression, Discrete:

I strcpy(parseBuf, "Discrete");

We will make this configurable, by adding the function WizProp_GetExpr before
the Wizar dObj_New function call to get the current value of the property named
PROP_RRECTA_BLINKEXPR. The string returned by that call, is returned into
the buffer blinkExpr:

W zProp_Get Expr (hChunk, whData, PROP_RRECTA BLI NKEXPR,
NL_TAGNAME, blinkExpr, defBlinkExprName);

That buffer is used as the parameter to BlinkL nk_New, which sets the expression to
use for the blink link:

wsprintf(parseBuf, "%", (LPSTR)blinkExpr);
Bl i nkLnk_New(hChunk, whCbj, parseBuf, FALSE,
RGB(0x00, 0x00, 0x00), RGB(0x00, 0x80, 0x40),
RGB(0x00, 0x00, 0x00), BLINK_MEDI UM);

Getting Started with the Wizard Toolkit 2-29

Thefirst time Wizard_New is called, there is no value for the property named
PROP_RRECTA_BLINKEXPR therefore, the default value (specified by
defBlinkExprName) is used (?d:Discrete). Once the InTouch application devel oper
double-clicks the Wizard and specifies a"real" blink expression, the property value
is set and Wizard_Edit will cause Wizard_New to be called again. Thistime, the
WizProp_GetExpr will return the value specified by the InTouch application
developer.

The modified RRectO1New function would become:

int

W NAPI

RRect 01New (
HCHUNK hChunk,
int i ndex,
int left,
int t op,
int right,
int bot t om
LPSTR dl | Nane,
VWHVEM whDat a,
int node,
RECT prevRect,
VWHVEM FAR * pwhW zar d)

{

VHVEM WhHLObj ;
VHVEM whQj

RECT ol dRect ;
RECT newRect ;
char bl i nkExpr [NL_EXPRESSI O\ ;

Set Rect (&ol dRect, 419, 19, 581, 91);
if (left == right & top == bottom {
right = left + oldRect.right - ol dRect.left;
bottom = top + ol dRect. bottom - ol dRect.top;

}
Set Rect (&newRect, left, top, right, botton);

/* Initialize any properties */

W zProp_Get Expr (hChunk, whDat a,
PROP_RRECTA_BLI NKEXPR, NL_EXPRESSI ON, bl i nkExpr,
def Bl i nkExpr Nane) ;

whHLGbj = W zardQbj _New (hChunk, (WHVEM) O,
left, top, right, bottom dllNane, index, whData);

wi zPen. |l opnStyle =0
wi zPen. | opnWdth. x = 1;
wi zPen. | opnWdth.y = 1;
wi zPen. | opnCol or = RGB (0x00, 0x00, 0x00);
WAKi t _Set Pen (&wi zPen) ;

wi zBrush. | bStyl e = 0;
wi zBrush. | bCol or = (Oxff, Oxff, Oxff);
wi zBrush. | bHat ch = 4;

WAKi t _Set Brush (&wi zBr ush):

Set Rect (& npRect1, 420, 20, 580, 90);

Rect _Scal e (& npRectl, &ol dRect, &newRect, 0);

whQbj = RRectangl eObj _New (hChunk, whHLObj,
tnpRect 1.l eft, tnpRectl.top,
tnpRect1.right, tnpRectl.bottom 20, 20);

conti nued

2-30 Chapter 2

wsprintf (parseBuf, "%", (LPSTR) blinkExpr);

Bl i nkLnk_New (hChunk, whCbj, parseBuf, FALSE,
RGB (0x00, 0x00, 0x00), RG&B (0x00, 0x80, 0x40),
RGB (0x00, 0x00, 0x00), BLINK_MEDI UM ;

*pwhW zard = whHLObj ;
return O;

}

Before we are finished, one more change needs to get made. The .DEF file needs to
be changed to add the exports for Wizard_Edit and RRectADIgProc. If these
exports are not added, those routines will not be visible outside the DLL and
problems will occur when WindowMaker wants to call your Wizard DLL:

LI BRARY wzsanpl e
DESCRI PTI ON ' W ZARD Tool kit Sanpl e DLL'

"' EXPORTS
W zar d_New
W zard_Getlnfo
W zardLi b_GetlInfo
W zard_Edi t
RRect ADI gPr oc

Now that we have completed these steps, when the InTouch application devel oper
pastes our simple Wizard into awindow and then, double-clicksiit, the following
dialog box will appear:

= Rounded Rectangle Wizard

Blink when: I?d:Discrete

| 1].4 I | Cancel I

The InTouch application developer can now enter avalid expression that will be
evaluated to control the blink link.

Getting Started with the Wizard Toolkit 2-31

Special Wizard Dialog Controls

The Wizard API provides several functions that expose some of the dialog controls
in WindowMaker. For example, if the Wizard devel oper wanted to have a Wizard
property that allows the InTouch application devel oper to configure the color of the
blink link, he could make the InTouch application devel oper type in the RGB color
in the edit control (not very friendly) or use the WWDIg_Register Color Ctl and
WWDIg_Unregister Color Ctl functions. These functions register adialog item to
use the standard InTouch color choice mechanism.

Let's assume that we wanted to allow the InTouch application devel oper to define
the color that will be used when our simple Wizard is blinking "on." To accomplish
this, we will have to first modify the dialog box to allow for the color change item to
be specified and then modify the dialog procedure. We will also have to modify the
RRect0O1New function to use another property named
PROP_RRECTA_ONCOLOR. First, the Wizard configuration dialog box should be
modified to allow for the color control. This must be alist box control. For

example:

RRECTADLG DI ALOG 18, 18, 232, 88

STYLE DS _MODALFRAME | WS_POPUP | W5_CAPTI ON

CAPTI ON "Rounded Rectangle W zard"
FONT 8, "MS Sans Serif"

BEG N

LTEXT "Blink when:", -1, 19, 19, 42, 11, WS_CH LD |
W5_VI SI BLE | W5_GROUP

CONTROL "", | D _RRECT_BLI NKEXPR, "EDI T", ES_LEFT |
ES AUTOHSCROLL | W5 CHILD | W5_VI SIBLE | W5_BORDER |
W5 _TABSTOP, 68, 17, 150, 12

LTEXT "Fill Color On:", -1, 19, 48, 47, 10, W5_CH LD |
W5_VI SI BLE | W5_GROUP

CONTROL "", | D _RRECTA ONCOLOR, "listbox", LBS_NOTIFY |
W5_BORDER | WS_CHI LD | LBS_NO NTEGRALHEI GHT, 70, 48,

20, 10

DEFPUSHBUTTON "OK", |DOK, 74, 70, 38, 14, WS CHILD |
WS VI SIBLE | WS_TABSTOP
PUSHBUTTON "Cancel ", | DCANCEL, 120, 70, 38, 14, WS_CHILD |
WS VI SI BLE | WS_TABSTOP
END

2-32

Chapter

2

The dialog procedure is a'so modified to use the color control. The
WWDIg_Register Color Ctrl function is called during WM _INITDIALOG
processing. The WWDIg_Register Color Ctrl uses alist box control. When the
application devel oper clicks on the list box the standard InTouch color selection
palette appears. Calling WWDIg_Unregister Color Ctrl returns the selected color
value. The RRectADIgProc would be as follows:

BOCOL

W NAPI

RRect ADI gProc (
HAND hDl g,
int message,
WPARAM wPar am
LPARAM | Par am

{
RECT rect;
DWORD dwDat a;
char t ext [NL_EXPRESSI ON] ;

SW t

ch (nmessage) {

case WM I NI TDI ALOG

/* Center the dialog */
Get W ndowRect (hDi g, &rect);
MoveW ndow (hDl g,
(CGet Systemvetrics (SM_CXSCREEN) -
(rect.right - rect.left)) / 2,
(CGet Systemvetrics (SM_CYSCREEN) -
(rect.bottom- rect.top)) / 2,
rect.right - rect.left,
rect.bottom- rect.top, FALSE);
/* Limt the nunber of characters in the blink
* expression control
*/
SendMessage (GetDi gltem (hDi g, | D_RRECT_BLI NKEXPR),
EM LI M TTEXT, NL_EXPRESSION - 1, 0);

/* Get properties and initialize dialog fields */

W zProp_Get DWord (editChunk, editOQbj,
PROP_RRECTA_ONCOLOR, &dwData, DEF_ON_COLOR);

WADI g_Regi sterColorCirl (hDl g, | D RRECTA ONCOLOR,
dwbat a) ;

W zProp_Get Expr (editChunk, editObj,
PROP_RRECTA_BLI NKEXPR, NL_EXPRESSI ON, text,
def Bl i nkExpr Nane) ;

Set Dl gl tenifext (hDl g, | D _RRECTA BLI NKEXPR, text);

return FALSE;

case WW_COVIVAND:

switch (LOMORD (wParam)) {
case | DCANCEL:
/* Unregister the color controls */
WADI g_Unregi sterColorCrl (hDli g,
| D_RRECTA_ONCOLOR, &dwDat a) ;

EndDi al og (hD g, 0);
return (TRUE);

conti nued

Getting Started with the Wizard Toolkit 2-33

case | DOK:

/* Unregister controls, save properties */

dwDat a = DEF_OFF_COLOR;

WADI g_Unregi sterColorCrl (hDl g,
| D_RRECTA_ONCOLOR, &dwbat a) ;

W zProp_Set DWrd (editChunk, editObj,
PROP_RRECTA_ONCOLOR, dwbDat a) ;

Get Dl glteniText (hD g, | D _RRECT_BLI NKEXPR, text,
NL_EXPRESSI ON) ;

text[NL_EXPRESSION - 1] = "\0';

W zProp_Set Expr (editChunk, editObj,
PROP_RRECTA _BLI NKEXPR, text);

EndDi al og (hDl g, 0);

return (TRUE);

defaul t:
return FALSE;

}
return TRUE;

defaul t:
return FALSE;

iet urn (TRUE);
}

The new property for the color, PROP_RECTA_ONCOLOR isretrieved during
WM_INITDIALOG using WizProp_GetDWord, then sent back to the Wizard
once the InTouch application developer clicks OK, using WizProp_SetDWord.
(Since the color valueis an RGB value, the property type that we useis DWORD.)

The last step is changing the RRectO1New function to use the new color property.
Since the calor fill for the blink link is one of the parametersin our
BlinkLink_New function, the "hard-coded" color value should be replaced by the
value saved in our property. The WizProp_GetDWord function is used to retrieve
the DWORD value in the property named PROP_RECTA_ONCOLOR, whichis
then stored in the LONG variable onColor.

Notice that the fill color parameter has been changed from the hard-coded RGB
color to the color in onColor:
Bl i nkLnk_New(hChunk, whCbj, parseBuf, FALSE,

RGB(0x00, 0x00, 0x00), onColor,
RGB(0x00, 0x00, 0x00), BLINK_MEDI UM);

2-34

Chapter 2

The new RRectO1New function becomes:

int W NAPI
RRect 01New (
HCHUNK hChunk,

int i ndex,

int left,

int top,

int right,

int bott om

LPSTR dl | Nane,

VWHVEM whDat a,

int node,

RECT prevRect,

WHVEM FAR * pwhW zar d)

VHIVEM WhHLObj ;
VHIVEM whnj ;

RECT ol dRect ;

RECT newRect ;

DWORD dwDat a;

char bl i nkExpr [NL_EXPRESSI O\ ;
LONG onCol or;

Set Rect (&ol dRect, 419, 19, 581, 91);

if (left == right & top == bottom {
right = left + oldRect.right - ol dRect.left;
bottom = top + ol dRect. bottom - ol dRect .t op;

}

Set Rect (&newRect, left, top, right, bottom;
/* Initialize any properties */

W zProp_Get DWrd (hChunk, whbDat a,

PROP_RRECTA ONCOLOR, &dwData, DEF_ON COLOR);
onCol or = (LONG dwbhat a;
W zProp_Get Expr (hChunk, whDat a,

PROP_RRECTA_BLI NKEXPR, NL_EXPRESSI ON, bl i nkExpr,

def Bl i nkExpr Nane) ;
whHLCbj = W zardQbj _New (hChunk, (WHVEM) O,

left, top, right, bottom dllNane, index, whData);

wi zPen. | opnStyl e
wi zPen. | opnW dt h. x
wi zPen. | opnW dt h.y
wi zPen. | opnCol or RGB (0x00, 0x00, 0x00);
WAKi t _Set Pen (&wi zPen) ;

0;
1
1;

wi zBrush. | bStyl e = 0;
wi zBrush. | bCol or = (Oxff, Oxff, Oxff);
wi zBrush. | bHat ch = 4;

WAKi t _Set Brush (&wi zBr ush):

Set Rect (& npRect1, 420, 20, 580, 90);
Rect _Scal e (& npRectl, &ol dRect, &newRect, 0);

conti nued

Getting Started with the Wizard Toolkit 2-35

whQbj = RRect angl eObj _New (hChunk, whHLObj,
tmpRect 1.l eft, tnpRectl.top,
tmpRect 1. right, tnmpRectl. bottom 20, 20);

wsprintf (parseBuf, "%", (LPSTR) blinkExpr);

Bl i nkLnk_New (hChunk, whCbj, parseBuf, FALSE,
RGB (0x00, 0x00, 0x00), onCol or,
RGB (0x00, 0x00, 0x00), BLINK_MEDI UM ;

*pwhW zard = whHLObj ;
return O;

}

Now that we have completed these steps, when the InTouch application devel oper
places our simple Wizard into awindow and double-clicks on it, the following
configuration dialog box will appear:

= Rounded Rectangle Wizard

Blink when: I?d:Discrete

Fill Color On: [__]

| 1].4 I | Cancel I

The InTouch application developer now has the ability to change both the Blink
Expression and the Color for the blink "on" condition.

2-36 Chapter 2

Wizard Toolkit Dialog Functions

The Wizard API also provides several functions that are worth mentioning at this
point. Some of the functions provide standard InTouch user interfaces such asa
script editor or key-equivaent handling. Other functions provide error checking and
can aleviate some of the tedious error checking of values that should occur in the

dialog procedures.
Function

Description

WWDIg_CheckExprCirl

WWDIg_CheckTagCtrl

WWDIg_GetDoubleCtrl

WWDIg_ProcessKeyCtrl

WWDIg_RegisterColorCirl

WWDIg_RegisterKeyCtrl

WWDIg_RegisterTagnameCtrl

WWDIg_ScriptEdit

WWDIg_SetDoubleCtrl

WWDIg_UnregisterColorCtrl

Vaidates the item using the
standard InTouch validation of
Script expressions. Error messages
are automatically displayed when
an error is detected.

Vaidates the diaog item using the
standard InTouch validation of
database tagnames. Error messages
are automatically displayed when
an error is detected.

Vadidates the dialog item using
standard InTouch validation rules
for floating point values. The
resulting value is returned.

Processes messages to the key-
equivaent handling controls.
Displays standard InTouch key-
equivalent dialog if requested.

Registers adialog item to use the
standard InTouch color choice
dialog.

Registers a set of dialog itemsto
obtain key-equivalent handling
information for the Wizard.

Registers adialog item to respond
to adouble-click by displaying the
standard tagname selection dialog.

Displays a generic script editing
dialog.

Sets the dia og item with the
character representation for the
floating point value specified.

Unregisters adiaog item that was
registered using
WWDIg_Register Color Ctrl. Any
memory used is freed and the
current color selection is returned.

Getting Started with the Wizard Toolkit 2-37

Function

Description

WWDIg_UnregisterKeyCirl

WWDIg_UnregisterTagnameCirl

Unregisters the set of dialog items
to that were registered in

WWDIg RegisterKeyCtrl. Frees
any memory associated with the
dialog mapping.

Unregisters adialog box item that
was registered using
WWDIg_Register TagnameCtrl.
Any memory is freed and the
control takes on its standard
Windows capabilities.

2-38 Chapter 2

3-1

CHAPTER 3

Wizard Toolkit Functions

This chapter describes the Wizard Toolkit Application Programming Interface
(API) functions that are used to create and manipulate InTouch objects. The
functionsin the Wizard API are used by the Wizard Devel oper to implement the
Wizard_New and Wizard_Edit functions for each wizard. A simple wizard may
only need to access afew of these functions while a complex wizard may need to
access many of them. The following briefly describes the categories of Wizard AP
functions and their primary purpose:

Wizard DLL:

Standard Functions Required to build the wizard DLL and called
by WindowMaker to access wizard
functionality.

Wizard API Functions:

General Functions Provide toolkit initialization, error checking
and other routines that are typically used by
al wizards.

Object Functions Manipulate window objects such as, text,
simple objects and complex trending and
alarm objects.

Link Functions Define animation, input/output functionality
for window objects.

Utility Functions Used for scaling fonts, points and rectangles.

Wizard Property Functions Define the properties for configurable
wizards.

User Interface Functions Used in wizard user interfaces to provide

consistent error checking and a common set of
user interface controls.

Database Tagname Functions Create, find and manipulate InTouch database
entries, Access Names and Alarm Groups.

Contents
m Wizard DLL Standard Functions
m Wizard APl Functions

3-2 Chapter 3

Wizard DLL Standard Functions

Asawizard developer you must create a Windows DLL for each set of wizards that
you distribute. One or more wizards can be contained in asingle DLL. A wizard
DLL must support a standard set of functions. These functions are called by
WindowMaker to access wizard functionality.

Function Description

Wizard New Creates anew wizard. Thisfunctionis caled
to place a new wizard, resize an existing
wizard, or after the user has modified the
wizard through the wizard's dialog.

Wizard_GetInfo Returns information about a particular wizard
for integration into the WindowM aker
Wizard Set.

WizardLib_Getinfo Returns information to WindowM aker about
aWizard Library.

Wizard Edit Brings up dialog box to edit the Wizard's

configuration. Y ou must supply a Windows
dialog box to handle changing the wizard's
configuration. Modify or edit wizard
properties as appropriate and save if user
clicks OK. Abandon changesiif user selects
Cancel.

Wizard_DoCommand Allows the wizard to execute a process for
command wizards. Required only for
command wizards.

For more information, see the "Command
Wizards" section of Chapter 4.

Each of the Wizard_ functions, for example, Wizard_New, that you must supply
for awizard DLL take a parameter called index. This parameter is used when
developing awizard DLL library that contains more than one wizard. Theindex isa
unique number that you use to identify each wizard in the wizard DLL. Thisindex
does not have to be unique across different wizard DLLs. Index must be a positive
number greater than 0.

Note We recommend that once you have distributed awizard DLL and assigned a
unique number to each wizard, that you maintain the same numbers for the wizards
inyour DLL. Also, if you later discontinue the support of awizard, do not reassign
the wizard's unique number to another wizard or new wizard in your wizard DLL.

Wizard Toolkit Functions 3-3

Wizard APl Functions

The functions described in this section are used by the Wizard developer to
implement the Wizard_New and Wizard_Edit functions for each wizard.

General Functions

General functions provide toolkit initialization, error checking, and other routines

typically used by all wizards.
Function

Description

WWKit_GetK eyStatus

WWKit_GetLastError

WWKit_GetSerial Number

WWKit_Init

WWKit_SetBrush

WWKit_SetFont

WWKit_SetPen

WWKit_SetTextBrush

WWKit_SetTextPen

Retrieves the current status of the
Wonderware hardware key.

Returns the error status of the most recent
call to the Wizard Toolkit.

Retrieves the seria number of the
Wonderware hardware key.

Initializes the wizard toolkit if not
previously done so. This call must be done
at least once per wizard DLL. Normally this
isdonein Wizard_New.

Sets the brush used when manipulating
objects that have a brush associated with
them.

Sets the font used when manipulating
objects that have afont associated with
them.

Sets the pen used when manipulating objects
that have a pen associated with them.

Sets the text brush used when manipulating
objects that have atext brush associated
with them.

Sets the text pen used when manipulating
objects that have atext pen associated with
them.

3-4 Chapter 3

Object Functions

Object functions are used to manipulate window objects such as text, simple
drawing objects, and the more complex trending and alarm objects. Using object
functions the developer can create useful application specific objects and general

purpose objects.

These functions create new window objects.

Function Description

AlarmObj_New Creates an alarm object at the specified
location in the current application window.

BitmapObj_New Creates a bitmap object at the specified

ButtonObj_New

DIIObj_New

EllipseObj_New

GroupObj New

HistTrendObj_New

LineObj New

PolygonObj New

PolylineObj_New

Real TrendObj_New

RectangleObj New

RRectangleObj New

location in the current application window.

Creates a button object at the specified
location in the current application window.
Labels the button with the specified text.

Createsa DLL object at the specified
location in the current application window.
Currently available DLL objects include the
InTouch SPC pareto, histogram, and control
chart objects.

Creates an ellipse object at the specified
location in the current application window.

Creates agroup (cell) object at the specified
location in the current application window.
The Wizard can then populate the group with
other objects by using this object's handle as
the parent handle.

Creates a historical trend object at the
specified location in the current application
window.

Creates aline object at the specified location
in the current application window.

Creates a polygon object at the specified
location in the current application window.

Creates a polyline object at the specified
location in the current application window.

Creates areal timetrend object at the
specified location in the current application
window.

Creates arectangle object at the specified
location in the current application window.

Creates arounded corner rectangle object at
the specified location in the current
application window.

Wizard Toolkit Functions 3-5

Function Description

SymbolObj_New Creates a symbol object at the specified
location in the current application window.
The Wizard can then populate the symbol
with other objects by using this object's
handle as the parent handle.

TextObj New Creates atext object at the specified location
in the current application window.
WizardObj_New Creates awizard object at the specified

location in the current application window.
Populate the wizard with other objects by
using this object's handle as the parent
handle. The following functions manipulate
existing window objects.

Obj_Delete Deletes the specified window object.

TrendObj_Setltem Configures an item within the specified
historical or real timetrend object. Each item
corresponds to a pen in the trend.

TrendObj_SetTimelnfo Configures the time axis settings within the
specified historical or real time trend object.

TrendObj_SetValuelnfo Configures the value axis settings within the
specified historical or real time trend object.

3-6 Chapter 3

Utility Functions

A set of utility functionsis provided for scaling fonts, points, and rectangles.

Function Description

Font_Scale Linearly scales the logical font supplied
using the old and new rectangles and the
string specified.

PointReal_Scale Linearly scales the point defined as floating

PointRealArray_Scale

Point_Scale

PointArray_Scale

Rect_Scale

RectReal _Scae

Text_GetExtent

point numbers supplied using the old and
new rectangles specified.

Linearly scales the array of points defined as
floating point numbers supplied using the
old and new rectangles specified.

Linearly scales the point supplied using the
old and new rectangles specified.

Linearly scales the array of points supplied
using the old and new rectangles specified.

Linearly scales the rectangle supplied using
the old and new rectangles specified.

Linearly scales the rectangle with REAL
coordinates.

Returns the width and height of thetext in
pixels, based upon the logical font specified.
This function should be used instead of the
Windows Get TextExtent function when
calculating the metrics of text to beused in
creating InTouch objects.

Wizard Toolkit Functions 3-7

Link Functions

Link functions define animation and input/output functionality for window objects.
These objects have been created using one of the functions in the Object Functions

group.
Function

Description

AnlgAlarmLnk_New

AnlgColorLnk_New

AnlginputLnk_New

AnlgOutputLnk_New

BlinkLnk_New
DisableLnk_New

DiscAlarmLnk_New

DiscColorLnk_New

DisclnputLnk_New

DiscOutputLnk_New

DiscTouchLnk_New

LocationLnk_New

OrientationLnk_New

PctFllLnk_New

SizelL.nk_New

SliderLnk_New

Connects an analog alarm link to the object
specified.

Connects an analog fill, text, or linelink to
the object specified.

Connects an analog input link to the object
specified.

Connects an analog output link to the object
specified.

Connects a blink link to the object specified.
Connects adisable link to the object
specified.

Connects adiscrete alarm link to the object
specified.

Connects a discrete fill, text, or linelink to
the object specified.

Connects a discrete input link to the object
specified.

Connects a discrete output link to the object
specified.

Connects a discrete touch link to the object
specified.

Connects a horizontal or vertical location
link to the object specified.

Connects an orientation link that defines the
specified object's angle of rotation.

Connects a horizontal or vertical percent fill
link to the object specified.

Connects a horizontal or vertical size link to
the object specified.

Connects a horizontal or vertical dider
touch link to the object specified.

3-8 Chapter 3

Function

Description

StmtTouchLnk_New

StrinputLnk_New

StrOutputLnk_New

VisibilityLnk_New

Connects an action touch link to the object
specified. Statements can be associated with
the up, down, and while down conditions to
the object.

Connects a string (message) input link to the
object specified.

Connects a string (message) output link to
the object specified.

Connects avisibility link to the object
specified.

The following function manipulates objects used in links.

Function

Description

Stmt_New

Creates and validates a block of statements
and returns a handle to the validated
statement.

Wizard Property Functions

Wizards are like "smart cells." These wizards contain all of the window objects
necessary to define configurable and sizable cells. A wizard may have properties
that define the smart cell's current configuration. When a user selects the smart cell
for editing, the wizard that created the smart cell displays adialog that allows the
user to configure the smart cell. The configuration data is stored with the smart cell

as wizard properties.

The following functions are used to retrieve and store wizard properties:

Function Description
WizProp_Delete Deletes the named wizard property.
WizProp_Find Returns a handle to the named wizard

WizProp_GetBlock

WizProp_GetDouble

WizProp_GetDWord

WizProp_GetExpr

property.

Returns the data for a named wizard property
that contains a block of data

Returns a floating point value for the named
wizard property.

Returns a double word (32-bit) value for the
named wizard property.

Returns the data for a named wizard property
that contains an expression.

Wizard Toolkit Functions 3-9

Function

Description

WizProp_GetFont

WizProp_GetStmt

WizProp_GetString

WizProp_New

WizProp_SetBlock

WizProp_SetDouble

WizProp_SetDWord

WizProp_SetExpr

WizProp_SetFont

WizProp_SetStmt

WizProp_SetString

Returns alogical font (Windows standard)
structure for the named wizard property. This
function provides a platform-independent
method to retrieve the logical font structure.

Returns the data for a named wizard property
that contains a statement.

Returns aNULL terminated string for the
named wizard property.

Creates awizard property with the name and
type specified.

Sets the data for a named wizard property
that contains a block of data.

Sets a floating point value for the named
wizard property.

Sets adouble word (32-bit) value for the
named wizard property.

Sets the data for a named wizard property
that contains an expression.

Setsalogical font (Windows standard)
structure for the named wizard property. This
function provides a platform-independent
method to save the logical font structure.

Sets the data for a named wizard property
that contains a statement.

SetsaNULL terminated string for the named
wizard property.

Chapter 3

User Interface Functions

A set of functionsis provided for use in wizard user interfaces to provide consistent
error checking and a common set of user interface controls.

Function

Description

WWDIg_CheckExprCitrl

WWDIg_CheckTagCtrl

WWDIg_GetDoubleCtrl

WWDIg_ProcessKeyCtrl

WWDIg_RegisterColorCtrl

WWDIg_RegisterKeyCtrl

WWDIg_RegisterTagnameCtrl

WWDIg_ScriptEdit
WWDIg_SetDoubleCtrl

WWDIg_UnregisterColorCtrl

WWDIg_UnregisterKeyCtrl

WWDIg_UnregisterTagnameCtrl

Vaidates the item using the standard
InTouch validation of QuickScript
expressions. Error messages are
automatically displayed when an error is
detected.

Vaidates the dialog item using the standard
InTouch validation of database tagnames.
Error messages are automatically displayed
when an error is detected.

Vaidates the dialog item using standard
InTouch validation rules for floating point
values. The resulting value is returned.

Processes messages to the key-equivalent
handling controls. Displays standard InTouch
key-equivalent dialog if requested.

Registers adialog item to use the standard
InTouch color choice dialog.

Registers a set of diaog items to obtain key-
equivaent handling information for the
wizard.

Registers adialog item to respond to a
double-click by displaying the standard
tagname selection dialog.

Displays a generic script editing dialog.

Sets the dialog item with the character
representation for the floating point value
specified.

Unregisters adialog item that was registered
using WWDIg_Register Color Ctrl. Any
memory used is freed and the current color
selection is returned.

Unregisters the set of dialog items that were
registered in WWDIg_Register KeyCitrl.
Frees any memory associated with the
mapping of dialog items.

Unregisters adialog item that was registered
using WWDIgRegister TagnameCtrl. Any

memory is freed and the control takes on its
standard Windows capabilities.

Wizard Toolkit Functions 3-11

Database Tag Functions

Database tag functions are used to create, find, and manipulate InTouch database
entries, access names and alarm groups.

The following functions create, find and delete database tags.

Function

Description

Tag_Find

Tag_FindApplTopicltem

Tag_New

Returns the handle of the database tagname
with the given name.

Returns the handle of the database tagname
with the specified application (server), topic,
and item description.

Creates a database tagname with the specified
name, type, and comment.

The following functions set and retrieve information for a database tag.

Function

Description

Tag_GetAccessinfo

Tag_GetGroup

Tag_GetInfo

Tag_GetRetentivelnfo

Tag_GetUniqueName

Tag_GetVaueAlarm

Tag_SetAccessinfo

Tag_SetDeviationAlarm

Tag_SetDiscAlarm

Tag_SetEventinfo

Tag_SetGroup

Tag_Setinfo

Tag_SetRateOfChangeAlarm

Returns general access information for a
database tagname.

Returns the group handle for the database
tagname with the given handle.

Returns general information for a database
tagname.

Returns retentive information for a database
tagname.

Returns a unique database name from
supplied base name.

Returns value alarm fields for a database
tagname.

Set general access information for a database
tagname.

Sets deviation alarm fieldsin agiven
tagname.

Sets discrete dlarm fields for a database
tagname.

Sets event logging information for a database
tagname.

Sets the group handle for the database
tagname with the given handle.

Sets general information for a database
tagname.

Setsrate of change alarm fields in a database
tagname.

3-12

Chapter 3

Function

Description

Tag_SetRetentivelnfo

Tag_SetScalinglnfo

Tag_SetVaueAlarm

Sets retentive information for a database
tagname.

Sets scaling information for a database
tagname.

Sets value adlarm fields for a database
tagname.

The following functions set and return information about tagnames that are type-

specific.
Function

Description

AnlgTag_GetInfo

AnlgTag_Setinfo
DiscTag_GetInfo

DiscTag_SetInfo
StrTag_Setinfo

Returns the initial value of an analog
tagname.

Setsthe initial value of an analog tagname.

Returns the initial value of an discrete
tagname.

Setstheinitial value of an discrete tagname.
Setsthe initial value of astring tagname.

The following functions manipulate access names required for DDE access name

tags.
Function

Description

AccessName Find

AccessName_FindApplTopic

AccessName_GetInfo

AccessName_GetName

AccessName_GetUnigueName

AccessName_New

AccessName_SetInfo
AccessName_SetName

Returns the handle of the Access Name with
the given name.

Returns the handle of the Access Name with
the given application and topic.

Returns access information and the given
access name |D (acclD).

Returns a pointer to the Access Name via
IpSourceName.

Returns a unique Access Name in the string
specified by Access Name, based on string
specified in basename.

Creates an Access Name with the specified
name and settings.

Sets access information into a |/OSOURCE.

Sets Access Name specified in the
IpSourceName.

4-1

CHAPTER 4

User Supplied Wizard Functions

This chapter describes in detail, the user supplied functions that are required for the
proper integration and execution of InTouch wizards. The functions' purpose,
syntax, parameters, and return values are also described.

Contents
m Functions Required to Create and Configure Wizards
m Functions Required to Integrate Wizards into InTouch

s Command Wizards

4-2 Chapter 4

Functions Required to Create and
Configure Wizards

There are two functions that must be supplied in order for InTouch to place and
configure wizards. Wizard_New and Wizard_Edit. Wizard New is called when
thewizard isinitialy placed, resized, or edited. Wizard_Edit is called when the
InTouch application developer double-clicks on awizard and provides the Wizard
developer with the opportunity to bring up a dialog and solicit input from the
InTouch application developer for configuration.

Wizard New

1 nt

W zard_New(HCHUNK hChunk,
i nt index,
int left,
int top,
int right,
int bottom
LPSTR dl | Nane,
VWHVEM whDat a,
i nt node,
RECT prevRect,
VHVEM FAR * pwhW zar d)

Description Called when a user places, resizes, or edits awizard.

Parameter Description

index Refersto the index number of a particular
wizardin alibrary.

| eft Left Coordinate of wizard.

top Top Coordinate of wizard.

right Right Coordinate of wizard.

bottom Bottom Coordinate of wizard.

diIName Name of DLL containing wizard code.

whData Pointer to wizard properties.

mode The reason Wizard New was called.
Value Meaning
MODE_NEW Wizard initially

placed

MODE_SIZE Wizard sized
MODE_EDIT Wizard edited

MODE_RESTORE An undo was issued

User Supplied Wizard Functions 4-3

Return Value

Comments

Parameter Description

prevRect Previous rectangle coordinates for
Wizard_New call.

pwhWizard Pointer to Wizard Object.

Error Code for configuration. Otherwise, O if there were no errors.

Wizard_New is called when the user initially places awizard, resizes awizard, or
configures awizard. The mode parameter indicates the condition that caused the
Wizard_New to be caled.

Wizard Edit

Description

Return Value

Comments

int
W zard_Edit(i nt index,

VWHVEM whDat a,
HCHUNK hChunk)

Allows the user to configure the wizard.

Parameter Description

index Refers to the index number of a particular
wizard in alibrary.

whData Pointer to wizard properties.

hChunk Memory allocation handle

Error Code for configuration. Otherwise, O if there were no errors.

Wizard_Edit is called when the user double-clicks on awizard. Typically adialog
box will appear that will allow the user to configure specific properties. The wizard
developer will bring up this dialog whenever Wizard_Edit is caled by

WindowMaker If thereisno Wizard_Edit routine, the Wizard is not configurable.

4-4 Chapter 4

Functions Required to Integrate
Wizards into InTouch

To fully integrate awizard library into the WindowMaker environment two
functions must be supplied: Wizard_GetInfo and WizardLib_GetInfo.
Wizard_Getlnfo should return information about a particular wizard and
WizardLib_Getlnfo should return information about a given Wizard Library

Wizard _GetInfo

BOOL

W zard_GetInfo(int index,
WORD wConmand,
DWORD dwbDat a,
LPVA D | pl nf 0)

Description Returns information about the wizard based on the value of dwData.
Parameter Description
index Refers to the index number of a particular
wizard in alibrary.
wCommand Specifies which property it is requesting
information about.
dwData Specifies more information used in retrieving
information about a specific wizard.
Iplnfo Pointer to the returned information
Return Value TRUE if information was returned. Otherwise, FALSE.
Comments The values requested in wCommand and the required actions are listed as follows:
Command Required Action
WIZ_BITMAP Return HBITMAP for selection dialog.
WIZ_DESCRIPTION Return wizard description string.
WIZ_FLAGS Return general flags for wizard.
Value Meaning
WIZFLAG_NONLITE Set if NON-LITE
mode wizard.

WIZFLAG_NOBREAK Set if NOT breakable
into components.

WIZFLAG_COMMAND Setif command
wizard.

User Supplied Wizard Functions 4-5

Command Required Action
WIZ_GROUPNAME Return wizard's group descriptive name.
WIZ_HELPINFO Return context sensitive help information.
WIZ_SIZEMODE Return size mode flags for wizard.
WIZSIZE_ASPECT Size X and Y retaining aspect (default).
WIZSIZE_FULL Unrestricted sizing.

WIZSIZE_NONE Not Supported.

WIZ_TBOXBITMAP Return HBITMAP for toolbar.

The WIZ_BITMAP, and WIZ_TBOXBITMAP commands will use the default
bitmapsif one is not supplied. To supply bitmaps for the wizard, there are three
bitmaps needed:

e 64x64 bitmap for the Wizard Selection Dialog
e 16x16 bitmap for toolbar when the button is up
e 16x16 bitmap for toolbar when the button is pressed

Note The pair of bitmaps used in the toolbar must be identical, except the fill for
the button up should be "buttonface" gray and the fill for the button down should be
white. WindowMaker will automatically create the 3-D border for you. The bitmap
you provide should not be shifted over and down. WindowMaker will handle the
"pressed in" effect automatically when the button is depressed.

4-6 Chapter 4

WizardLib_GetInfo

BOCL

W zar dLi b_Get | nf o i ndex,
WORD wCommand,
DWORD dwDat a,
LPVA D | pl nf o)
Description Returns information about the wizard library based on the value of dwData.
Parameter Description
index Refers to the index number of a particular

wizard in alibrary.

wCommand Specifies which property it is requesting
information about.
dwData Specifies more information used in retrieving
information about the wizard library.
Iplnfo Pointer to the returned information
Return Value TRUE if information was returned. Otherwise, FALSE.
Comments The values requested in wCommand and the required actions are listed in the

following table.
Command

Required Action

WIZ_COMPANYNAME

WIZ_LIBNAME
WIZ_NEXTWIZID

WIZ_VERSIONNUM
WIZ_VERSIONSTR

Return company description string.
Return library descriptive name.

Return next wizard ID based on the current
wizard |D passed in dwData. Return the first
wizard ID, (generally 1) when dwDatais 0.
Return a0 to indicate that dwData is the last
wizard ID.

Return library version number.

Return library version description string.

User Supplied Wizard Functions 4-7

Command Wizards

Command wizards are wizards that start processes or applications and do not place
or edit objects. Command wizards are specified by returning
WIZFLAG_COMMAND for the case WIZ_FLAGS in the function
Wizard_Getlnfo. If thisflag is set, then the functions Wizard_DoCommand must
be provided.

Wizard DoCommand

Description

Return Value

Comments

int
W zar d_DoConmand(i nt index)

Allows the user to execute an application or run a process, such as converting a
database.

Parameter Description

index Refers to the index number of a particular
wizard in alibrary.

Error Code for configuration. Otherwise, O if there were no errors.

Command wizards do not place objects on the window, or allow editing. They
simply execute the code in Wizard_DoCommand. Wizard_DoCommand is called
when the InTouch application devel oper selects a command wizard from the Wizard
Selection dialog box viathe wizard tool or clicks a command wizard button on the
toolbar.

4-8

Chapter 4

5-1

CHAPTER 5

Style Guide for Wizard Library
Development

This chapter contains our recommended style guide for Wizard libraries. These
guidelines are provided to help you implement good basic wizard devel opment
practices. Taking some time to learn these basic naming conventions now may save
you alot of time later!

Contents
m Guidelines for Wizard Library Development

5-2 Chapter 5

Guidelines for Wizard Library
Development

Each wizard library should be named with a unique mnemonic (referred to as
<name> in this document) that identifies the type of wizards in the library. For
example, SWITCH, METER, and so on. This short abbreviated name will be used
throughout the wizard library to generate names for specific files, functions, defines
and declarations.

Creating Libraries with Multiple Wizards

Some changes are required to build awizard library with multiple wizards. If you
follow these simple naming conventions, the routines become very generic and can
easily handle wizard libraries with any number of wizards. The samples provided
for WizardGet_Info and WizardLib_Getl nfo use these naming conventions.

Assign each wizard in the library atwo-digit ID. For example, O1 for the first
wizard. The <name> and <id> will be combined in many places to namefiles,
functions and defines. For example, METEROL1.C or MeterO1New.

Use asample wizard library to obtain standard file name examples, such as
WZMAIN.C, WZSTUB.C. A two-letter prefix should be used to identify your
wizards from any wizards produced by other sources. Thiswill help eliminate
wizard DL Ls of the same name. All of the wizards built into InTouch use WZ as the
two-letter identifier. Choose one that makes sense for you.

Wizard Library Directory

The naming convention for the directory should be:

<id prefix><name> (for example, WZMETER).
The naming convention for the makefile should be:

named <id prefix><name>.MAK (for example, WZMETER.MAK).
The makefile will cause the DLL <id prefix><name>.DLL to be built.

Style Guide for Wizard Library Development 5-3

Wizard C Modules

Function

Use the standard WZMAIN.C and WZSTUB.C files for the common C modules.
The WZMAIN.C file will have aWZMAIN.H header file for the global
declarations. Typically this H file will have the globals containing the default values
and the string global s containing the property names.

Each wizard NEW function should be placed in its own C module named using the
form <name><id> where <id> isatwo digit ID for the wizard. (for example,
METERO02.C will have the wizard new function M eter 02New).

Since it will be very common for asingle dialog to be shared by multiple wizards,
each unique wizard dialog should be placed in its own C module. This module
should be named using the form <name><l|etter> where <letter> is a unique letter
from A to Z assigned to each unique dialog in the wizard library. (for example,
METERA.C will have the wizard dialog procedure M eter ADIgPr oc for the dialog
resource named METERADLG in the resource file.)

Names

<name><letter>DlgProc Dialog procedure for a unique wizard dialog.
For example: MeterADIgProc
<name><id>New Wizard new function for awizard.

For example: MeterO1New

WZMAIN.C

To create the WZM AIN.C file, modify one of a sample wizards that was supplied
with the Wizard Toolkit. Make sure to replace the <name> for the sample library
with your <name> for your wizard library.

Change the include wz<name>.h.

Add the necessary forward declarations for the wizard new functions (for example,
MeterO1New). Remove the ones for the original sample wizards.

Add the necessary forward declarations for the wizard dialog procedures (for
example, MeterADIgProc). Remove the ones for the original sample wizards.

Add the casesto Wizard_Edit to call each of the unique dialogs for the wizards.
For example:

case 1:
case 2:
Di al ogBox(hDraw nst, "METERADLG', hDrawwhd,
Met er ADI gProc) ;
br eak;
case 3:
Di al ogBox(hDraw nst, "METERBDLG', hDrawwhd,
Met er BDI gProc) ;
br eak;

In this example, two wizards (IDs 1 and 2) use the same dialog "METERADLG."

5-4 Chapter 5

Add the casesto Wizard_New to call each of the wizard new functions for each
wizard. For example,

case 1:
error = MeterO1lNew(hChunk, index, left, top, right,
bottom dl I Nane, whProperties, pwhWzard);
br eak;
case 2:
error = Meter02New(hChunk, index, left, top, right,
bottom dl | Nane, whProperties, pwhWzard);
br eak;
case 3:
error = Meter03New(hChunk, index, left,
top, right, bottom dll Narme, whProperties, pwhWzard

br eak;

Header File

Create a header file named <id prefix><name>.h (for example, WZMETER.H) for
your wizard library file. It will contain control 1Ds for dialogs, defines for
properties, and external definitions for globals containing property names and
property defaults. These property name and default globals are declared in
WZMAIN.H.

Diaog control 1Ds are associated with a unique dialog, not a unique wizard.
Therefore, name your control |Ds based on each unique dialog they belong to. Use
the naming convention |ID_<name><letter> <description>. For example, the
controls used by wizards of type MeterA would be named:

#define | D_METERA EXPR 101
#def i ne | D_METERA_ GAUGEGROUP 105
#def i ne | D_METERA GAUGETEXT 106
#def i ne | D_METERA GAUGEFI LLCOLOR 107
#defi ne | D_METERA GAUGETEXTCOLOR 108
#def i ne | D_METERA RANGEGROUP 110
#define | D_METERA M N 111
#define | D_VETERA MAX 112
#define | D_METERA Tl CKGROUP 115
#define | D_METERA_MAJORDI V 116
#define | D_METERA_M NORDI V 117
#define | D_METERA LABELGROUP 120
#def i ne | D_METERA DI SPLAYLABEL 121
#define | D_METERA LABELTEXTCOLOR 122
[

#def i ne

W)

METERA NUMFORVAT 123

Style Guide for Wizard Library Development 5-5

Remember, property nhames are usually associated with a unique dialog, not a
unique wizard. Therefore, name your property defines based on the corresponding
unigque dialog. Use the naming convention PROP_<name><letter>_<description>.
For example, the properties used by wizards of type MeterA would be named:

#defi ne PROP_METERA EXPR exprStr

#defi ne PROP_METERA GAUGETEXT gaugelabel Str
#defi ne PROP_METERA GAUGEFI LLCOLOR gaugeFil | Col orStr
#defi ne PROP_METERA GAUGETEXTCOLOR gaugeText Col or Str

#defi ne PROP_METERA LABELTEXTCOLOR | abel Text Col or Str
#define PROP_METERA M N m nVal ueStr

#defi ne PROP_METERA MAX maxVal ueStr

#defi ne PROP_METERA MAJORDI V maj orDi vStr

#defi ne PROP_METERA M NORDI V mnorDi vStr

#defi ne PROP_METERA DI SPLAYLABEL di spl ayLabel Str

It isvery possible for more than one wizard to use the property defined in this
example. There should be a dialog for the defined properties that is named
METERADLG in the resource file.

Default property defines may either be defined as constants or references to globals
declared in WZMAIN.H. For these defines use the naming convention
DEF_<name><id>_<description>. For example, the default defines for button
defaults would be named:

/* Button 5 */

#defi ne DEF_BUTTNO5_ON COLOR RGB(0x00, Oxff, 0x00)
#def i ne DEF_BUTTNO5_OFF_COLOR RGB(Oxff, 0x00, 0x00)

/* Button 6 */

#define DEF_BUTTNO6_ON COLOR RGB(Oxff, 0x00, 0x00)
#defi ne DEF_BUTTNO6_OFF_COLOR RGB(0x80, 0x80, 0x80)

/* Button 7 */

#define DEF_BUTTNO7_ON_COLOR RGB(0x00, Oxff, 0x00)
#def i ne DEF_BUTTNO7_OFF_COLOR RGB(Oxff, 0x00, 0x00)

An example for the defaults for the wizards in the TEXT wizard library would be;

#define DEF_TEXTO1l TAGNAME tagnameSt r
#define DEF_TEXTO1_LABEL "Title"

5-6

Chapter 5

Definition (.DEF) File

Name the DEF file for the wizard library <id prefix><name>.DEF.
For example: WZMETER.DEF
The LIBRARY statement should name the library <id prefix><Name>
For examplee WZMETER
Remember to export all dialog procedures in addition to the standard wizard DLL
entry points. The standard wizard DLL entry points are:
Wizard_New
Wizard_Edit
Wizard_GetInfo
WizardLib_Getlnfo

Resource (.RC) File

Name the resource file <id prefix><name>.RC.
For example: WZMETER.RC

Name all bitmap files using the following convention:

<name><id>M.BMP for Wizard selection dialog box bitmap (for example,
METER04M.BMP)

<name><id>T.BMP for Toolbar bitmap (for example, METERO4AT.BMP)

<name><id>P.BMP for Toolbar pushed in bitmap (for example,
METERO04P.BMP)

Name each bitmap resource the same as the filename, without the period (.). For
example, name all bitmap resources using the following conventions:

<name><id>MBMP for Wizard selection dialog box bitmap (for example,
METER04M.BMP)

<name><id>TBMP for Toolbar bitmap (for example, METERO4TBMP)

<name><id>PBMP for Toolbar pushed in bitmap (for example,
METERO04P.BMP)

For example:

METERO2TBMP Bl TMAP MOVEABLE PURE "METERO2T. BMP"

Name each unique wizard dialog resource <name><|etter>DL G where <letter> isa
unique letter from A to Z assigned to each unique dialog in the wizard library.

For example: METERADLG
METERADLG DI ALOG DI SCARDABLE 9, 24, 250, 66

Style Guide for Wizard Library Development 5-7

We recommend that all wizard descriptions reside in the STRINGTABLE for the
wizard library. The string table identifier for each wizard is generated using the
following formula:

Long Description <id>*2-1

Short Description <id>* 2

STRI NGTABLE

BEG N

1, "Wzard ID #1 Long Description”
2, "Wzard ID #1 Short Description®
3, "Wzard I D #2 Long Description”
4, "Wzard ID #2 Short Description”
5, "Wzard I D #3 Long Description”
6, "Wzard I D #3 Short Description®
END

Put all wizard descriptions in the STRINGTABLE for the wizard library. The string
table identifier for each wizard is generated using the following formula

Long Description <id>*2-1

Short Description <id>* 2

5-8

Chapter 5

6-1

CHAPTER 6

Wizard APl Function Reference

This chapter is a complete reference manual for the Wizard Toolkit Application
Programming Interface (APIl). Wizards are implemented using functionsin the
Wizard API. All of the Wizard API functions are documented in this chapter. They
are presented in alphabetic order. The purpose, syntax, parameters and possible
return values for all functions are included.

Contents

m Wizard APl Function Reference

6-2 Chapter 6

AccessName Find

| / OSOURCE
AccessNane_Fi nd(LPSTR srcNane)

Description Returns the handle of the Access Name with the given name.
Parameter Description
srcName Points to a null-terminated string containing the
Access Name.
Return Value Handle to the Access Name found. Otherwise, it isO.
Comments None.

AccessName_ FindApplTopic

| / OSOURCE

AccessNanme_Fi ndAppl Topi ¢(LPSTR applicati on,
LPSTR t opi c)

Description Returns the handle of the Access Name with the given application and topic.
Parameter Description
application Points to a null-terminated string containing the

application name (for example, "EXCEL"). The
application can aso include the node name (for
example, "\NODE\EXCEL").

topic Points to a null-terminated string containing the 1/0
topic (for example, "SHEET1.XLS").

Return Value Handle to the Access Name found. Otherwise, it isO.

Comments None.

AccessName_Getinfo

I nt

AccessNane_Get I nfo(|/ OSOURCE accl D,
LPACCESSI NFO | pl nf 0)

Description Returns the access information in the given Access Name ID (acclD).
Parameter Description
acclD [/OSOURCE that specifies a particular Access
Name.
Iplnfo Pointer to the access information structure.
Return Value Error code or O if successful.

Comments An error will be returned if the acclD isaninvaid I/O Source ID.

Wizard API Function Reference 6-3

AccessName_ GetName

Description

Return Value

Comments

I nt

AccessNane_Get Nanme(|/ OSOURCE accl D,
LPSTR | pSour ceNane)

Returns a pointer to the Access Name via lpSourceName for the given Access Name
ID (acclD).

Parameter Description

acclD [/OSOURCE that specifies a particular Access
Name.

[pSouceName Pointer to a string containing the Access Name

associated with accl D.

Error code or O if successful.

An error will be returned if the acclD isaninvalid I/O Source ID.

AccessName_ GetUniqueName

Description

Return Value

Comments

I nt

AccessNane_Get Nane(LPSTR basenane,
LPSTR accessnan®)

Returns aunique I/O Access Name in the string specified by Access Name, based
on the string specified in base name.

Parameter Description

basename Pointer to a string containing the base for the unique
Access Name.

accessname Pointer to a string containing the unique Access
Name.

Error code or O if successful.

An error will be returned if a unique name cannot be found.

6-4 Chapter 6

AccessName New

| / OSOURCE

AccessNanme_New(LPSTR srcNane,
LP_ACCESSNAMEI NFO | pl nf o)

Description Creates an Access Name with the specified name and settings.
Parameter Description
srcName Points to a null-terminated string containing the
Access Name.
Iplnfo Points to an ACCESSNAMEINFO structure that

contains the Access Name settings.

Return Value Thereturn value is the handle of the Access Name if the function is successful.
Otherwisg, it isO.

Comments This function will fail if the Access Name already exists.

AccessName_ Setinfo

I nt

AccessNane_Set I nfo(|/ OSOURCE accl D,
LP_ACCESSNAME | pl nf 0)

Description Sets the Access Name information into the I/OSOURCE specified in acclD.
Parameter Description
acclD [/OSOURCE identifier.
Iplnfo Pointer to the Access Name information structure.
Return Value Error code.

Comments None.

Wizard API Function Reference 6-5

AccessName_ SetName

I nt

AccessNane_Set Nane(

Description
(acclD).

Parameter

I/ OSOURCE accl D,
LPSTR | pSour ceNane)

Sets the Access Name specified in IpSourceName for the given Access Name ID

Description

acclD

[pSourceName

Return Value

Comments

AlarmObj_New

VWHVEM

[/OSOURCE that specifies a particular Access
Name.

Pointer to a string containing the Access Name
associated with acclD.

Error code or O if successful.

An error will be returned if the acclD isaninvalid I/O Source ID.

Al ar nbj _New(HCHUNK hChunk,

VWHVEM whPar ent ,

int left,

int top,

int right,

int bottom

WORD al ar nifype,

WORD opti ons,

LONG wi ndowCol or,
LONG bor der Col or,
LONG titl eBar Col or,
LONG titl eText Col or,
LONG unAckAl nCol or,
LONG ackCol or,

LONG rtnCol or,

LONG evt Col or,

LPSTR al ar nfFor mat ,
LPSTR al ar nGr oup,
LPSTR fronPriority,
LPSTR toPriority,
LPSTR pr evPageTagnane,
LPSTR next PageTagnane)

6-6

Chapter 6

Description

Creates an alarm object at the specified location in the current application window.

Parameter

Description

hChunk
whParent

left

top
right
bottom

alarmType

options

windowCol or

borderColor

titleBarColor

titleTextColor

Handle to the memory section containing the object.

Handle to the parent object (symbol, group, or
wizard) that will contain this object. O indicates
there is no parent object.

Specifies the x-coordinate of the upper-left corner.
Specifies the y-coordinate of the upper-left corner.
Specifies the x-coordinate of the lower-right corner.
Specifies the y-coordinate of the lower-right corner.

Specifies the flags that determine the alarm type.
This parameter can be one of the following values:

Value Meaning

ALARM_SUMMARY Specifiesan alarm

summary object.

ALARM_HISTORY Specifiesan alarm

history object.

Specifies the flags that determine the alarm object
options. This parameter can be a combination of the
following values:

Value Meaning

ALARM_ Specifies atitle bar for the alarm
TITLES object with labels for each column.

ALARM_ Specifiesthe display of aarms/events

SERVER collected by the server node. Thisis
used in conjunction with the
master/slave configuration.

Specifies the alarm object's background color.
Colors are specified in Windows standard RGB
format.

Specifies the color of the alarm object's border.
Colors are specified in Windows standard RGB
format.

Specifies the color of the alarm object'stitle bar.
Colors are specified in Windows standard RGB
format.

Specifies the color of the alarm object's column
titlesin the title bar. Colors are specified in
Windows standard RGB format.

Wizard API Function Reference 6-7

Return Value

Comments

Parameter

Description

unAckAlmColor

ackColor

rtnColor

evtColor

alarmFormat

alarmGroup

fromPriority

toPriority

prevPageTagname

nextPageTagname

Specifiesthe text color of the alarm object's
unacknowledged alarms. Colors are specified in
Windows standard RGB format.

Specifies the text color of the alarm object's
acknowledged alarms. Colors are specified in
Windows standard RGB format.

Specifies the text color of the alarm object's return
to normal alarms. Colors are specified in Windows
standard RGB format. Not used for
ALARM_SUMMARY type.

Specifies the text color of the alarm object's events.
Colors are specified in Windows standard RGB
format. Not used for ALARM_SUMMARY type.

Points to a null-terminated string containing the
format specification for the alarm information.

Points to a null-terminated string containing the
alarm group tagname or group variable tagname to
use for the link. For example, $System displays al
alarmsin al groups.

Points to a null-terminated string containing the
specification for the highest alarm priority level for
the range of priorities that will be displayed in the
alarm object. An analog tagname or constant value
can be specified. For example, "FromPri" or "1".

Points to a null-terminated string containing the
specification for the lowest alarm priority level for
the range of priorities that will be displayed in the
alarm object. An analog tagname or constant value
can be specified. For example, "ToPri" or "999".

Points to a null-terminated string containing the
discrete tagname used to start the display to page
up. An empty string indicates no page up capability.

Points to a null-terminated string containing the
discrete tagname used to start the display to page
down. An empty string indicates no page down
capability.

The return value is the handle of the object if the function is successful. Otherwise,

it iswhNull.

None.

6-8 Chapter 6

AnlgAlarmLnk_New

VHVEM
Anl gAl ar nLnk_New(HCHUNK hChunk,
VHVEM whObj ,
WORD | i nkType,
WORD al ar niType,
LPSTR t agnane,
LONG FAR col ors[5])
Description Creates an analog alarm link for the object specified.
Parameter Description
hChunk Handle to the memory section containing the object
for which the link is being created.
whODbj Handle to the object for which the link is being
created.
linkType Specifies the flags that determine the link type. This
parameter can be one of the following values:
Value Meaning
LINE_LINK Specifiesaline
color link based on
aarm status.
TEXT_LINK Specifies atext
color link based on
aarm status.
FILL_LINK Specifies afill color
link based on alarm
status.
alarmType Specifies the flags that determine the alarm type.

This parameter can be one of the following values:

Value Meaning

VALUE _ALARM_LINK Specifiesavalue
adarmlink. A value
alarm can bein one
of five states: LoLo,
Lo, Normal, Hi,
HiHi.

DEV_ALARM_LINK Specifies adeviation
darmlink. A
deviation alarm can
bein one of three
states: Normal,
Minor, Magjor.

ROC_ALARM_LINK Specifies arate of
change (ROC) alarm
link. A ROC adarm
has two states:
Normal, ROC.

Wizard API Function Reference 6-9

Parameter Description

tagname Points to a null-terminated string containing the
analog tagname to use for the link.

colors Points to an array of five LONG types. Each LONG

specifies an aarm state color. Colors are specified
in Windows standard RGB format.

Theindex for each itemin the array is defined as
followsfor the VALUE_ALARM_LINK aarm

type.
Value Meaning

0 Specifies the color for
the LoLo alarm status.

1 Specifies the color for
the Lo aarm status.

2 Specifies the color for
the Normal alarm
status.

3 Specifies the color for
the Hi alarm status.

4 Specifies the color for
the HiHi alarm status.

Theindex for each
iteminthearray is
defined as follows for
the
DEV_ALARM_LINK
alarm type.

0 Specifies the color for
the Normal alarm
status.

1 Specifies the color for
the Minor Deviation
alarm status.

2 Specifies the color for
the Mgjor Deviation
alarm status.

6-10

Chapter 6

Return Value

Comments

Value

Meaning

3,4

2,34

Unused, but must be
passed.

Theindex for each
iteminthearray is
defined as follows for
the
ROC_ALARM_LINK
alarm type.

Specifies the color for
the Normal alarm
status.

Specifies the color for
the ROC aarm status.

Unused, but must be
passed.

Thereturn value is the handle of the link if the function is successful. Otherwise, it

iswhNull.

If azero (0) isreturned, check for invalid tagname, link type or alarm type.

Wizard API Function Reference 6-11

AnlgColorLnk_ New

Description

Return Value

Comments

VWHVEM

Anl gCol or Lnk_New(HCHUNK hChunk,

VWHVEM whQoj ,

WORD | i nkType,
LPSTR expressi on,
REAL FAR val ue[4],
LONG FAR col ors[5])

Creates an analog fill, text, or line link for the object specified. Five value ranges
are defined by specifying four breakpoints. Five different colors can be selected
which will be displayed as the value range changes.

Parameter

Description

hChunk

whObj

linkType

expression

value

colors

Handle to the memory section containing the object
for which the link is being created.

Handle to the object for which the link is being
created.

Specifies the flags that determine the link type. This
parameter can be one of the following values:

Value Meaning

LINE_LINK Specifiesaline
color link based on
aarm status.

TEXT_LINK Specifies atext
color link based on
aarm status.

FILL_LINK Specifies afill color
link based on darm
status.

Points to a null-terminated string containing the
analog expression or tagname to use for the link.

Points to an array of four REAL types. Each REAL
specifies avalue range breakpoint. Four breakpoints
are used to define the five value ranges. Each item
in the array must be greater than the previous item.

Points to an array of five LONG types. Each LONG
specifies avalue range color. Index 0 of the array
corresponds to the lowest value range. Index 4 of
the array corresponds to the highest value range.
Colors are specified in Windows standard RGB
format.

Thereturn value is the handle of the link if the function is successful. Otherwise, it

iswhNull.

If azero (0) isreturned, check for invalid analog expression or link type.

6-12

Chapter 6

AnlginputLnk New

Description

VWHVEM

Anl gl nput Lnk_New(HCHUNK hChunk,
VWHVEM whQoj ,
LPSTR t agnane,
LPSTR user Msg,
BOOL bUseKeypad,
BOCL bl nput Onl y,
BYTE cKeyFl ags,
WORD wVi rt Key,
REAL ni nVal ue,
REAL nexVal ue)

Creates an analog input link for the object specified.

Parameter Description

hChunk Handle to the memory section containing the object
for which the link is being created.

whODbj Handle to the object for which the link is being
created.

tagname Points to a null-terminated string containing the
analog tagname to use for the link.

userMsg Points to a null-terminated string containing the
message or instruction to display if the bUseKeypad
option is enabled.

bUseKeypad Specifies the use of an on-screen keypad for
entering new vaues if this vaue is non-zero.

bl nputOnly Specifiesthislink as input only, the value entered
will not be displayed, if this value is non-zero. This
setting only applies to objects that have text display
associated with them (for example, a push button).

cKeyFlags Specifies the flags used when a keyboard key is

assigned to thislink. This parameter can be a
combination of the following values:

Value

Meaning

TOUCH_KS_SHIFT

TOUCH_KS_CTRL

Specifiesthe SHIFT
key must be held
down in addition to
the key specified.

Specifiesthe CTRL
key must be held
down in addition to
the key specified.

Specifies that only
the specified key
must be held down.

Wizard API Function Reference 6-13

Return Value

Comments

Parameter Description

wVirtKey Specifies the keyboard key equivaent assigned to
thislink. Thisvalueis 0 if thereis no keyboard
equivalent.

minValue Specifies the minimum allowable input value.

maxValue Specifies the maximum allowable input value.

Thereturn value is the handle of the link if the function is successful. Otherwise, it
iswhNull.

If azero (0) isreturned, check for invalid tagname or too long a userMsg variable.

AnlgOutputLnk_ New

Description

Return Value

Comments

VWHVEM

Anl gQut put Lnk_New(HCHUNK hChunk,
VHVEM whQoj ,
LPSTR expr essi on)

Creates an analog output link for the object specified.

Parameter Description

hChunk Handle to the memory section containing the object
for which thelink is being created.

whObj Handle to the object for which the link is being
created.

expression Points to a null-terminated string containing the

analog expression or tagname to use for the link.

Thereturn value is the handle of the link if the function is successful. Otherwise, it
iswhNull.

If azero (0) isreturned, expression is NULL, too long or invalid.

AnlgTag_Getinfo

Description

Return Value

Comments

int
Anl gTag_Get I nf o(DBHND dbHnd,
LP_ANLGTAGQ NFO | pAnl gl nf 0)

Returns the anal og tagname for the database tagname with the given handle.

Parameter Description

dbHnd Handle to the database tagname.

IpAccessinfo Pointer to the anal og tagname information structure.
Error code.

None.

6-14

Chapter 6

AnlgTag_Setinfo

Description

Return Value

Comments

int
Anl gTag_Set | nf o(DBHND dbHnd,
LP_ANLGTAG NFO | pAnl gl nf 0)

Sets the analog tagname information for a database tagname with the given handle.

Parameter Description

dbHNd Handle to the database tagname.

[pAnlglnfo Pointer to the analog tagname information structure.
Error code.

None.

BitmapObj_ New

Description

Return Value

Comments

VEM

Bi t mapCbj _New(HCHUNK hChunk,
VWHVEM whPar ent ,
int left,
int top,
int right,
int bottom
HBI TMAP hBi t map)

Creates a bitmap object at the specified location in the current application window.

Parameter Description
hChunk Handle to the memory section containing the object.
whParent Handle to the parent object (symbol, group, or

wizard) that will contain this object. O indicates
there is no parent object.

left Specifies the x-coordinate of the upper-left corner.
top Specifies the y-coordinate of the upper-left corner.
right Specifies the x-coordinate of the lower-right corner.
bottom Specifies the y-coordinate of the lower-right corner.
hBitmap Handle of the bitmap to "paste" into the object. The

bitmap is a standard Windows bitmap.

The return value is the handle of the object if the function is successful. Otherwise,
it iswhNull.

The object will be created if hBitmap isNULL.

Wizard API Function Reference 6-15

BlinkLnk_New

Description

Return Value

Comments

VWHVEM

Bl i nkLnk_New(HCHUNK hChunk,
VWHVEM whQbj ,
LPSTR expressi on,
BOOL bl nvi si bl eWhenBl i nked,
LONG | i neCol or,
LONG fill Col or,
LONG t ext Col or,
i nt blinkSpeed)

Creates ablink link for the object specified.

Parameter Description

hChunk Handle to the memory section containing the object
for which the link is being created.

whODbj Handle to the object for which the link is being
created.

expression Points to a null-terminated string containing the

bl nvisibleWhenBlinked

lineColor

fillColor

textColor

blinkSpeed

analog expression or tagname to use for the link.

Specifies that the object will blink by disappearing
and reappearing if this valueis non-zero. Otherwise,
the abject will blink by changing the specified line,
fill and text color attributes.

Specifies the object's line color. Colors are specified
in Windows standard RGB formet.

Specifies the object's fill color. Colors are specified
in Windows standard RGB formet.

Specifies the object's text color. Colors are specified
in Windows standard RGB formet.

Specifies the blinking speed for the object. The
following values are defined to specify the blink
speed.

Value Meaning

BLINK_SLOW Specifies the slow
blink speed as

defined in InTouch.

Specifiesthe
medium blink speed
asdefined in
InTouch.

Specifies the fast
blink speed as
defined in InTouch.

BLINK_MEDIUM

BLINK_FAST

Thereturn value is the handle of the link if the function is successful. Otherwise, it

iswhNull.

If azero (0) isreturned, if expressionis NULL, too long or invalid.

6-16 Chapter 6

ButtonObj_New

VWHVEM

Butt onCbj _New(HCHUNK hChunk,
VWHAMVEM whPar ent

int left,

int top,

int right,

int bottom

LPSTR text)

Description Creates a button object at the specified location in the current application window.

Parameter Description
hChunk Handle to the memory section containing the object.
whParent Handle to the parent object (symbol, group, or

wizard) that will contain this object. O indicates
there is no parent object.

left Specifies the x-coordinate of the upper-left corner.
top Specifies the y-coordinate of the upper-left corner.
right Specifies the x-coordinate of the lower-right corner.
bottom Specifies the y-coordinate of the lower-right corner.
text Points to a null-terminated string containing the
button's text.

Return Value The rert]urnI I\/al ueisthe handle of the object if the function is successful. Otherwise,

it iswhNull.

Comments The function will fail if buttonbold is greater than MAX_BUTTON_STRINGLEN.

Wizard API Function Reference 6-17

DisableLnk_ New

VWHVEM
Di sabl eLnk_New(HCHUNK hChunk,
VHVEM whObj ,
LPSTR expressi on,
BOOL di sabl eWhenTr ue)
Description Creates adisable link for the object specified.
Parameter Description
hChunk Handle to the memory section containing the object
for which thelink is being created.
whODbj Handle to the object for which the link is being
created.
expression Points to a null-terminated string containing the
analog expression or tagname to use for the link.
disableWhenTrue If this value is non-zero, the object's touch
capability is disabled when the disable expression
evaluates to a non-zero value. Otherwise, the
object's touch capability is disabled when the
disable expression evaluates to zero.
Return Value Thereturn value is the handle of the link if the function is successful. Otherwise, it
iswhNull.

Comments None.

6-18 Chapter 6

DiscAlarmLnk_ New

VHVEM
Di scAl ar mLnk_New(HCHUNK hChunk,
VHVEM whObj |
WORD | i nkType,
LPSTR t agnane,
LONG al ar nCol or,
LONG nor nmal Col or)
Description Creates adiscrete alarm link for the object specified.
Parameter Description
hChunk Handle to the memory section containing the object
for which the link is being created.
whODbj Handle to the object for which the link is being
created.
linkType Specifies the flags that determine the link type. This
parameter can be one of the following values:
Value Meaning
LINE_LINK Specifiesaline
color link based on
aarm status.
TEXT_LINK Specifies atext
color link based on
aarm status.
FILL_LINK Specifies afill color
link based on alarm
status.
tagname Points to a null-terminated string containing the
discrete tagname to use for the link.
alarmColor Specifies the color when the tagnameisin aarm
state. Colors are specified in Windows standard
RGB format.
normal Color Specifies the color when the tagnameis not in alarm
state. Colors are specified in Windows standard
RGB format.
Return Value Thereturn value is the handle of the link if the function is successful. Otherwise, it
iswhNull.

Comments If azero (0) isreturned, check for invalid tagname or linkType.

Wizard API Function Reference

6-19

DiscColorLnk _New

Description

Return Value

Comments

VWHVEM
Di scCol or Lnk_New(

HCHUNK hChunk,
VHVEM whQbj ,

WORD | i nkType,
LPSTR expressi on,
LONG onCol or,
LONG of f Col or)

Creates adiscretefill, text, or line link for the object specified.

Parameter Description
hChunk Handle to the memory section containing the object
for which thelink is being created.
whODbj Handle to the object for which the link is being
created.
linkType Specifies the flags that determine the link type. This
parameter can be one of the following values:
Value Meaning
LINE_LINK Specifiesaline
color link based on
alarm status.
TEXT_LINK Specifies atext
color link based on
alarm status.
FILL_LINK Specifies afill color
link based on aarm
status.
expression Points to a null-terminated string containing the
discrete expression or tagname to use for the link.
onColor Specifies the color when the expression eval uates to
"on" (non-zero). Colors are specified in Windows
standard RGB format.
offColor Specifies the color when the expression eval uates to

"off" (zero). Colors are specified in Windows
standard RGB format.

Thereturn value is the handle of the link if the function is successful. Otherwise, it

iswhNull.

If azero (0) isreturned, expressionisor invalid, or linkTypeisinvalid.

6-20

Chapter 6

DisclnputLnk _New

Description

VWHVEM

Di scl nput Lnk_New(HCHUNK hChunk,
VHVEM whQbj ,
LPSTR t agnane,
LPSTR user Msg,
LPSTR onMsg,
LPSTR of f Msg,
LPSTR set Msg,
LPSTR reset Msg,
BOCOL bl nput Only,
BYTE cKeyFl ags,
WORD wWVi rt Key)

Creates adiscrete input link for the object specified.

Parameter Description

hChunk Handle to the memory section containing the object
for which the link is being created.

whODbj Handle to the object for which the link is being
created.

tagname Points to a null-terminated string containing the

discrete tagname to use for the link.

userMsg Points to a null-terminated string containing the
message or instruction to display when the link for
this object is activated.

onMsg Points to a null-terminated string containing the
message to display when the tagname has an "on"
(non-zero) value. This message is displayed only for
objects that have atext field.

offMsg Points to a null-terminated string containing the
message to display when the tagname has an "of "
(zero) value. This message is displayed only for
objects that have atext field.

setMsg Points to a null-terminated string containing the
label for the "Set" button that appears when this link
is activated. The default label, "Set" will be used if
this parameter is the empty string ().

resetMsg Points to a null-terminated string containing the
label for the "Reset" button that appears when this
link is activated. The default label, "Reset" will be
used if this parameter isthe empty string ("").

Wizard API Function Reference 6-21

Parameter Description

blnputOnly Specifiesthislink as input only, the value entered
will not be displayed, if this value is non-zero. This
setting only applies to objects that have text display
associated with them (for example, a push button).

cKeyFlags Specifies the flags used when a keyboard key is
assigned to thislink. This parameter can be a
combination of the following values:

Value Meaning

TOUCH_KS SHIFT Specifiesthe SHIFT
key must be held
down in addition to
the key specified.

TOUCH_KS CTRL Specifiesthe CTRL
key must be held
down in addition to
the key specified.

0 Specifies that only
the specified key
must be held down.

wVirtKey Specifies the keyboard key equivalent assigned to
thislink. Thisvalueis 0 if thereis no keyboard
equivalent.
Return Value The return value is the handle of the link if the function is successful. Otherwisg, it
iswhNull.
Comments If azero (0) isreturned, tagnameis NULL, too long or invalid userMsg, onMsg,

offMsg, setMsg is NULL or too long.

6-22

Chapter 6

DiscOutputLnk New

Description

Return Value

Comments

VHVEM

Di scQut put Lnk_New(HCHUNK hChunk,
VHVEM whQbj ,
LPSTR expressi on,
LPSTR onMsg,

LPSTR of f Msg)
Creates a discrete output link for the object specified.

Parameter Description

hChunk Handle to the memory section containing the object
for which the link is being created.

whODbj Handle to the object for which the link is being
created.

expression Points to a null-terminated string containing the

expression or tagname to use for the link.

onMsg Points to a null-terminated string containing the
message to display when the tagname has an "on"
(non-zero) value. This message is displayed only for
objects that have atext field.

offMsg Points to a null-terminated string containing the
message to display when the tagname has an "of "
(zero) value. This message is displayed only for
objects that have atext field.

Thereturn value is the handle of the link if the function is successful. Otherwise, it
iswhNull.

If azero (0) isreturned, expression isNULL, too long or invalid onMsg, offMsg, is
NULL or too long.

DiscTag_Getinfo

Description

Return Value

Comments

I nt

Di scTag_Get | nfo(DBHND dbHnd,
LP_DI SCTAG NFO | pDi scl nf 0)

Returns the discrete tagname information for the database tagname with the given
handle.

Parameter Description

dbHNd Handle to the database tagname.

IpDisclnfo Pointer to the discrete tagname information
structure.

Error code.

None.

Wizard API Function Reference 6-23

DiscTag_Setinfo

I nt

Di scTag_Set | nfo(DBHND dbHnd,
LP_DI SCTAG NFO | pDi scl nf 0)

Description Sets the discrete tagname information for a database tagname with the given handle.
Parameter Description
dbHNd Handle to the database tagname.
IpDisclnfo Pointer to the discrete tagname information
structure.
Return Value Error code.
Comments None.

DiscTouchLnk New

VWHVEM
Di scTouchLnk_New(HCHUNK hChunk,
VHVEM whObj |
LPSTR t agnane,
WORD acti onType,
BYTE cKeyFl ags,
WORD wWVi rt Key)
Description Creates a discrete touch link for the object specified.
Parameter Description
hChunk Handle to the memory section containing the object
for which the link is being created.
whODbj Handle to the object for which the link is being
created.
tagname Points to a null-terminated string containing the
discrete tagname to use for the link.
actionType Specifies the flags that determine the action type for

the touch link. This parameter can be one of the
following values:

Value Meaning

ACTION_DIRECT Specifies the direct
action that will set
the value equal to 1
when the button is
pressed and held
down. Thevalue
automeatically resets
to 0 when the button
isreleased.

6-24

Chapter 6

cKeyFlags

Value

Meaning

ACTION_REVERSE

ACTION_TOGGLE

ACTION_RESET

ACTION_SET

Specifiesthe reverse
action that will set
the value equal to 0
when the button is
pressed and held
down. The vaue
automeatically resets
to 1 when the button
isreleased.

Specifies the toggle
action that will set
thevalueto 1if itis
currently O and O if
the valueis currently
1 when the button is
pressed.

Specifies the reset
action that will set
the value to O when
the button is
pressed.

Specifies the set
action that will set
thevaueto 1 when
the button is
pressed.

Specifies the flags used when a keyboard key is
assigned to thislink. This parameter can be a
combination of the following values:

Value

Meaning

TOUCH_KS_SHIFT

TOUCH_KS_CTRL

Specifiesthe SHIFT
key must be held
down in addition to
the key specified.

Specifiesthe CTRL
key must be held
down in addition to
the key specified.

Specifies that only
the specified key
must be held down.

Wizard API Function Reference 6-25

Parameter Description
wVirtKey Specifies the keyboard key equivaent assigned to
thislink. Thisvalueis 0 if thereis no keyboard
equivalent.
Return Value Thereturn value is the handle of thelink if the function is successful. Otherwise, it
iswhNull.
Comments If azero (0) isreturned, tagnameis NULL or too long; or actionType isinvalid.

DIIObj New

VWHVEM

Dl | Qbj _New(HCHUNK hChunk,
VWHVEM whPar ent ,
int left,
int top,
int right,
int bottom
LPSTR dl | Nane,
DWORD dI | Dat a)

Description Createsa DLL object at the specified location in the current application window.
Currently available DLL objects include the InTouch SPC pareto, histogram, and
control chart objects.

Parameter Description
hChunk Handle to the memory section containing the object.
whParent Handle to the parent object (symbol, group, or

wizard) that will contain this object. 0 indicates
thereis no parent object.

left Specifies the x-coordinate of the upper-left corner.
top Specifies the y-coordinate of the upper-left corner.
right Specifies the x-coordinate of the lower-right corner.
bottom Specifies the y-coordinate of the lower-right corner.
diiData Specifies data unique to each DLL that initializes
the object.
diIName Points to a null-terminated string containing the
name of the DLL capable of creating the object.
"SPCDLL":
Value Meaning
SPC_CONTROL Create an SPC
control chart.
SPC_HISTOGRAM Create an SPC
histogram chart.
SPC_PARETO Create an SPC
pareto chart.
Return Value The return value is the handle of the object if the function is successful. Otherwise,
it iswhNull.

Comments None.

6-26 Chapter 6

EllipseObj_New

Elli pseCbj _New(HCHUNK hChunk,
VWHMVEM whPar ent

int left,

int top,

int right,

int bottom

Description Creates an ellipse object at the specified location in the current application window.

Parameter Description
hChunk Handle to the memory section containing the object.
whParent Handle to the parent object (symbol, group, or

wizard) that will contain this object. O indicates
thereis no parent object.

left Specifies the x-coordinate of the upper-left corner.
top Specifies the y-coordinate of the upper-left corner.
right Specifies the x-coordinate of the lower-right corner.
bottom Specifies the y-coordinate of the lower-right corner.

Return Value The rert]urnI I\/al ueisthe handle of the object if the function is successful. Otherwise,
it iswhNull.

Comments None.

Wizard API Function Reference 6-27

Font_Scale

Description

Return Value

Comments

va D

Font _Scal e(HWND hWhd,
LPLOGFONT | Fnt,
LPRECT ol d,
LPRECT new,

LPSTR text)

Linearly scalesthelogical font supplied using the old and new rectangles and the

string specified.

Parameter Description

hwnd NULL must be passed for this parameter.

[Fnt Points to aLOGFONT structure that defines the
characteristics of thelogical font used to display the
text in the rectangle specified by the old parameter.
The scaled font will be returned in this parameter.
LOGFONT is a Windows structure.

old Pointsto a RECT structure that defines the original
rectangle that was used to display the text specified
by the text parameter.

new Pointsto a RECT structure that defines the new
rectangle that will be used to display the text
specified by the text parameter.

len Specifies the number of bytes in the string.

text Points to the character string used to scale the
logical font within the rectangle specified.

None.

The old and new RECT structures set the proportion to change the text.

6-28 Chapter 6

GroupObj New

G oupQbj _New(HCHUNK hChunk,
VWHMVEM whPar ent

int left,
int top,
int right,
int bottom
Description Creates agroup (cell) object at the specified location in the current application
window. Populate the group with other objects by using this object's handle as the
parent handle.
Parameter Description
hChunk Handle to the memory section containing the object.
whParent Handle to the parent object (symbol, group, or
wizard) that will contain this object. O indicates
there is no parent object.
left Specifies the x-coordinate of the upper-left corner.
top Specifies the y-coordinate of the upper-left corner.
right Specifies the x-coordinate of the lower-right corner.
bottom Specifies the y-coordinate of the lower-right corner.
Return Value The return value is the handle of the object if the function is successful. Otherwise,
it iswhNull.

Comments None.

Wizard API Function Reference

6-29

HistTrendObj New

Description

VHVEM
Hi st TrendCbj _New(

HCHUNK hChunk,
VWHVEM whPar ent ,
int left,

int top,

int right,

int bottom
LPSTR t agnane,
LONG chart Col or,
LONG bor der Col or,
WORD spanUnits,
DWORD spanTi ne,
WORD di spl ayMode,
WORD opt i ons)

Creates a historical trend object at the specified location in the current application

window.

Parameter Description

hChunk Handle to the memory section containing the object.

whParent Handle to the parent object (symbol, group, or
wizard) that will contain this object. O indicates
there is no parent object.

left Specifies the x-coordinate of the upper-left corner.

top Specifies the y-coordinate of the upper-left corner.

right Specifies the x-coordinate of the lower-right corner.

bottom Specifies the y-coordinate of the lower-right corner.

tagname Points to a null-terminated string containing a
historical trend tagname.

chartColor Specifies the color of the chart's background. Colors
are specified in Windows standard RGB format.

borderColor Specifies the color of the chart's border. Colors are
specified in Windows standard RGB format.

spanUnits Specifies the flags that determine the measurement

units for the spanTime parameter. This parameter
can be one of the following values:

Value Meaning

TIME_SEC Specifies units as
seconds.

TIME_MIN Specifies units as

minutes.

6-30

Chapter 6

Return Value

Comments

Value Meaning
TIME_HR Specifies units as
hours.
TIME_DAY Specifies units as
days.
spanTime Specifies the historical trend object's time span in

units specified by the spanUnits parameter. This
parameter can be avalue from 1 to 999.

displayMode Specifies the flags that determine the initial display
mode. This parameter can be one of the following
values:

Value Meaning

HTREND_MODE_AVE Specifies average
value data display.

HTREND_MODE MINMAX Specifies minimum
and maximum data
display.

options Specifies the flags that determine the trend options.

This parameter can be a combination of the
following values:

Value Meaning

TREND_RT_CHANGES Specifiesthat run-
time changes to the
historical trend are
allowed.

Thereturn value is the handle of the object if the function is successful. Otherwise,
it iswhNull.

Possible error conditions include, invalid spanUnits, spanTime, displayMode,
tagname (not a historical tagname type).

Defaults are taken for colors, labels, division information and pen colors.

If the specified tagname does not exist, one will be created.

Wizard API Function Reference 6-31

LineObj New

Description

Return Value

Comments

VWHVEM

Li neCbj _New(HCHUNK hChunk,

VWHAMEM whPar ent

Creates aline object at the specified location in the current application window.

Parameter Description

hChunk Handle to the memory section containing the object.

whParent Handle to the parent object (symbol, group, or
wizard) that will contain this object. O indicates
there is no parent object.

x1 Specifies the x-coordinate of the beginning of the
line.

yl Specifies the y-coordinate of the beginning of the
line.

X2 Specifies the x-coordinate of the end of the line.

y2 Specifies the y-coordinate of the end of theline.

The return value is the handle of the object if the function is successful. Otherwise,

it iswhNull.

None.

6-32

Chapter 6

LocationLnk_New

Description

VWHVEM

Locati onLnk_New(HCHUNK hChunk,
VWHVEM whQbj
WORD | i nkType,
WORD r ef er enceType,
LPSTR expressi on,
REAL m nVal ue,
REAL maxVal ue,

int
int

m nPosi tion,
maxPosi ti on)

Creates a horizontal or vertical location link for the object specified.

Parameter Description
hChunk Handle to the memory section containing the object
for which the link is being created.
whODbj Handle to the object for which the link is being
created.
linkType Specifies the flags that determine the link type. This
parameter can be one of the following values:
Value Meaning
VERT_LINK Specifiesavertical
link.
HORIZ_LINK Specifiesa
horizontal link.
referenceType Specifies the flags that determine the reference type.

This parameter can be one of the following values:

Value

Meaning

LINK_LEFT

LINK_MIDDLE

Specifies that the
object will be
moved using the
object's left side as
itsorigin. Thisvalue
isvalidfor a
HORIZ_LINK.

Specifies that the
object will be
moved using the
object's horizontal
midpoint asits
origin. Thisvaueis
valid for a
HORIZ_LINK.

Wizard API Function Reference 6-33

expression

minValue

maxValue

minPosition

Value Meaning
LINK_RIGHT Specifies that the
object will be

moved using the
object'sright side as
itsorigin. Thisvaue
isvalid for a
HORIZ_LINK.

LINK_TOP Specifies that the
object will be
moved using the
object'stop asits
origin. Thisvalueis
valid for a
VERT_LINK.

LINK_CENTER Specifies that the
object will be
moved using the
object's vertical
midpoint asits
origin. Thisvalueis
valid for a
VERT_LINK.

LINK_BOTTOM Specifies that the
object will be
moved using the
object's bottom as its
origin. Thisvalueis
valid for a
VERT_LINK.

Points to a null-terminated string containing the
analog expression or tagname to use for the link.

Specifies the value when the object is at its highest
(VERT_LINK) or leftmost (HORIZ_LINK)
position.

Specifies the value when the object is at its lowest
(VERT_LINK) or rightmost (HORIZ_LINK)
position.

Specifies the number of pixels the object will move
up (VERT_LINK) or left (HORIZ_LINK) fromits
current position in relation to the val ues specified
for the minValue and maxValue parameters.

6-34

Chapter 6

Return Value

Comments

Parameter Description

maxPosition Specifies the number of pixelsthe object will move
down (VERT_LINK) or right (HORIZ_LINK) from
its current position in relation to the values specified
for the minValue and maxValue parameters.

Thereturn value is the handle of the link if the function is successful. Otherwise, it
iswhNull.

If azero (0) isreturned, expression is NULL, too long or invalid or, linkType or
referenceType isincorrect.

Obj Delete

Description

Return Value

Comments

BOOL
oj _Del et e(HCHUNK hChunk,
VHVEM whQbj)
Deletes the specified window object.
Parameter Description
hChunk Handle to the memory section containing the object.
whObj Handle to the object to delete.

Thereturn valueis TRUE if the function is successful. Otherwise, it is FALSE.

None.

Wizard API Function Reference 6-35

OrientationLnk_New

Description

Return Value

Comments

VWHVEM

OientationLnk_New(HCHUNK hChunk,
VWHVEM whQbj
LPSTR expressi on,

REAL
REAL
REAL
REAL
REAL
REAL

CCWraxVal ue,
CwWraxVal ue,
CCWraxDegr ees,
CWrexDegr ees,
xOF fset,

yO fset)

Creates an orientation link that defines the specified object's angle of rotation.
Description

Parameter

hChunk

whObj

expression

CCWmaxValue

CWmaxValue

CCWmaxDegrees

CWmaxDegrees

xOffset

yOffset

Handle to the memory section containing the object
for which the link is being created.

Handle to the object for which the link is being
created.

Points to a null-terminated string containing the
analog expression or tagname to use for the link.

Specifies the value when the object is rotated to its
maximum counter-clockwise position.

Specifies the value when the object is rotated to its
maximum clockwise position.

Specifies the maximum number of degreesthe
object will rotate counter-clockwise (starting at
12:00) from its current position in relation to the
values specified for the CCWmaxValue and
CWmaxValue parameters.

Specifies the maximum number of degreesthe
object will rotate clockwise (starting at 12:00) from
its current position in relation to the values specified
for the CCWmaxValue and CWmaxValue
parameters.

Specifies the number of pixels the object's rotation
centerpoint is moved horizontally from the
centerpoint of the object (positive values are right).

Specifies the number of pixels the object's rotation
centerpoint is moved vertically from the centerpoint
of the object (positive values are down).

Thereturn value is the handle of the link if the function is successful. Otherwise, it

iswhNull.

If azero (0) isreturned, expression isNULL, too long or invalid.

6-36

Chapter 6

PctFillLnk_New

Description

VWHVEM

Pct Fi | | Lnk_New(HCHUNK hChunk,
VHVEM whQbj ,
WORD | i nkType,
WORD di rectionType,
LPSTR expressi on,
REAL m nVal ue,
REAL maxVal ue,
i nt m nPercent,
i nt maxPercent,
LONG fill Col or)

Creates a horizontal or vertical percent fill link for the object specified.

Parameter Description

hChunk Handle to the memory section containing the object
for which the link is being created.

whODbj Handle to the object for which the link is being

created.

linkType Specifies the flags that determine the link type. This
parameter can be one of the following values:

Value

Meaning

VERT_LINK

HORIZ_LINK

directionType

LINK_LEFT

LINK_MIDDLE

Specifiesavertical
link.

Specifiesa
horizonta link.

Specifies the flags
that determine the
direction type for
thefill'sorigin. This
parameter can be
one of the following
values:

Specifies that the
object will befilled
from the object's | eft
side. Thisvalueis
valid for a
HORIZ_LINK.

Specifies that the
object will befilled
from the object's
horizontal midpoint.
Thisvaueisvalid
foraHORIZ_LINK.

Wizard API Function Reference 6-37

Return Value

Comments

Value Meaning

LINK_RIGHT Specifies that the
object will befilled
from the object's

right side. This
vaueisvalid for a
HORIZ_LINK.

LINK_TOP Specifies that the
object will befilled
from the object's
top. Thisvalueis
valid for a
VERT_LINK.

LINK_CENTER Specifies that the
object will befilled
from the object's
vertical midpoint.
Thisvalueisvalid
foraVERT_LINK.

LINK_BOTTOM Specifies that the
object will befilled
from the object's
bottom. Thisvalue
isvalid for a
VERT_LINK.

expression Points to a null-terminated string containing the
analog expression or tagname to use for the link.

minValue Specifies the value when the fill reaches its smallest
amount.

maxValue Specifies the value when the fill reaches its largest
amount.

minPercent Specifies the percentage, from 0 to 100, of the

object's defined width (HORIZ_LINK) or height
(VERT_LINK) that the object will filled when the
expression is at the minValue.

maxPercent Specifies the percentage, from 0 to 100, of the
object's defined width (HORIZ_LINK) or height
(VERT _LINK) that the object will filled when the
expression is at the maxValue.

fillColor Specifiesthefill color. Colors are specified in
Windows standard RGB format.

Thereturn value is the handle of thelink if the function is successful. Otherwise, it
iswhNull.

If azero (0) isreturned, expression is NULL, too long or invalid or, linkType,
directionType areinvalid.

6-38

Chapter 6

Point_Scale

Description

va D

Poi nt _Scal e(LPPO NT dest,

LPRECT ol d,
LPRECT new,
int flags)

Linearly scales the point supplied using the old and new rectangles specified.

Parameter Description

dest Pointsto a POINT structure that defines the original
point that was based upon the original rectangle.
The scaled point will be returned in this parameter.

old Pointsto a RECT structure that defines the original
rectangle.

new Pointsto a RECT structure that defines the new
rectangle.

flags Specifies the flags that determine the scaling mode.

This parameter can be a combination of the
following values:

Value Meaning
0 SCALE X1|
SCALE Y1.

Specifies scaling of
al coordinates. The
coordinates are

absolute.
SCALE X1 Specifies linear

scaling of the x-

coordinate.
LOFFSET_X1 Specifies the x-

coordinate should
retain the same
offset from the left
edge of the
rectangle.

ROFFSET_X1 Specifies the x-
coordinate should
retain the same
offset from the right
edge of the
rectangle.

OFFSET_X1 The sameas
LOFFSET_X1.

Wizard API Function Reference 6-39

Value Meaning

SCALE Y1 Specifies linear
scaling of they-
coordinate.

TOFFSET_Y1 Specifiesthe y-

coordinate should
retain the same
offset from the top
edge of the
rectangle.

BOFFSET Y1 Specifiesthey-
coordinate should
retain the same
offset from the
bottom edge of the
rectangle.

OFFSET_Y1 The same as
LOFFSET_Y 1.

SCALE_REL Specifies that the
coordinates are
relative to the origin
of therectangle. If
thisflag is not set
then the coordinates
are assumed to be
absolute.

Return Value None.

Comments If the scaling mode SCALE_REL is set then the coordinates will be unaffected
when SCALE X1, or SCALE_Y1 are used. The X1 flags cannot be combined.
Likewisefor the Y1 flags.

6-40 Chapter 6

PointArray_ Scale

VO D
Poi nt Array_Scal e(i nt nPts,
LPPO NT dest,
LPRECT ol d,
LPRECT new,
int flags)
Description Linearly scales the array of points supplied using the old and new rectangles
specified.
Parameter Description
nPts Specifies the number of pointsin the array.
dest Pointsto an array of POINT structures. Each
structure in the array specifies a point that defines
an original point that was based upon the original
rectangle. Each point in the array will be scaled and
returned in this parameter.
old Pointsto a RECT structure that defines the original
rectangle.
new Pointsto a RECT structure that defines the new
rectangle.
flags Specifies the flags that determine the scaling mode.

This parameter can be a combination of the
following values:

Value Meaning
0 SCALE X1|
SCALE Y1.

Specifies scaling of
al coordinates. The
coordinates are

absolute.
SCALE X1 Specifies linear

scaling of the x-

coordinate.
LOFFSET_X1 Specifies the x-

coordinate should
retain the same
offset from the left
edge of the
rectangle.

ROFFSET_X1 Specifies the x-
coordinate should
retain the same
offset from the right
edge of the
rectangle.

Wizard API Function Reference 6-41

Value Meaning
OFFSET_X1 The sameas
LOFFSET_X1.
SCALE Y1 Specifies linear
scaling of they-
coordinate.
TOFFSET_Y1 Specifiesthey-

coordinate should
retain the same
offset from the top
edge of the
rectangle.

BOFFSET Y1 Specifiesthe y-
coordinate should
retain the same
offset from the
bottom edge of the
rectangle.

OFFSET_Y1 The same as
LOFFSET_Y 1.

SCALE_REL Specifies that the
coordinates are
relative to the origin
of therectangle. If
thisflag is not set
then the coordinates
are assumed to be
absolute.

Return Value None.

Comments If the scaling mode SCALE_REL is set then the coordinates will be unaffected
when SCALE X1, or SCALE_Y1 are used. The X1 flags cannot be combined.
Likewisefor the Y1 flags.

6-42 Chapter 6

PointReal Scale

VO D
Poi nt Real _Scal e(LPPO NTREAL dest,
LPRECT ol d,
LPRECT new,
int flags)
Description Linearly scales the point, with REAL coordinates, using the old and new rectangles
specified.
Parameter Description
dest Points to a POINTREAL structure that defines the
original point that was based upon the original
rectangle. The scaled point will be returned.
old Pointsto a RECT structure that defines the original
rectangle.
new Pointsto a RECT structure that defines the new
rectangle.
flags Specifies the flags that determine the scaling mode.
Can be a combination of the following values:
Value Meaning
0 SCALE X1|
SCALE Y1.

Specifies scaling of
al coordinates. The
coordinates are

absolute.
SCALE X1 Specifies linear

scaling of the x-

coordinate.
LOFFSET_X1 Specifies the x-

coordinate should
retain the same
offset from the left
edge of the
rectangle.

ROFFSET_X1 Specifies the x-
coordinate should
retain the same
offset from the right
edge of the
rectangle.

Wizard API Function Reference 6-43

Value Meaning
OFFSET_X1 The sameas
LOFFSET_X1.
SCALE Y1 Specifies linear
scaling of they-
coordinate.
TOFFSET_Y1 Specifiesthey-

coordinate should
retain the same
offset from the top
edge of the
rectangle.

BOFFSET Y1 Specifiesthe y-
coordinate should
retain the same
offset from the
bottom edge of the
rectangle.

OFFSET_Y1 The same as
LOFFSET_Y 1.

SCALE_REL Specifies that the
coordinates are
relative to the origin
of therectangle. If
thisflag is not set
then the coordinates
are assumed to be
absolute.

Return Value None.

Comments If the scaling mode SCALE_REL is set then the coordinates will be unaffected
when SCALE X1, or SCALE_Y1 are used. The X1 flags cannot be combined.
Likewisefor the Y1 flags.

6-44

Chapter 6

PointRealArray_Scale

Description

va D

Poi nt Real Array_Scal e(int nPts,

LPPO NTREAL dest,
LPRECT ol d,
LPRECT new,
int flags)

Linearly scales the array of points, with REAL coordinates, using the old and new

rectangles specified.

Parameter Description

nPts Specifies the number of pointsin the array.

dest Pointsto an array of POINTREAL structures. Each
structure in the array specifies a point that defines
an original point that was based upon the original
rectangle. Each point in the array will be scaled and
returned in this parameter.

old Pointsto a RECT structure that defines the original
rectangle.

new Pointsto a RECT structure that defines the new
rectangle.

flags Specifies the flags that determine the scaling mode.

This parameter can be a combination of the
following values:

Value Meaning
0 SCALE X1|
SCALE Y1.

Specifies scaling of
all coordinates. The
coordinates are
absolute.

SCALE X1 Specifies linear
scaling of the x-

coordinate.

Specifiesthe x-
coordinate should
retain the same
offset from the left
edge of the
rectangle.

Specifiesthe x-
coordinate should
retain the same
offset from the right
edge of the
rectangle.

LOFFSET_X1

ROFFSET_X1

Wizard API Function Reference 6-45

Value Meaning
OFFSET_X1 The sameas
LOFFSET_X1.
SCALE Y1 Specifies linear
scaling of they-
coordinate.
TOFFSET_Y1 Specifiesthey-

coordinate should
retain the same
offset from the top
edge of the
rectangle.

BOFFSET Y1 Specifiesthe y-
coordinate should
retain the same
offset from the
bottom edge of the
rectangle.

OFFSET_Y1 The same as
LOFFSET_Y 1.

SCALE_REL Specifies that the
coordinates are
relative to the origin
of therectangle. If
thisflag is not set
then the coordinates
are assumed to be
absolute.

Return Value None.

Comments If the scaling mode SCALE_REL is set then the coordinates will be unaffected
when SCALE X1, or SCALE_Y1 are used. The X1 flags cannot be combined.
Likewisefor the Y1 flags.

6-46

Chapter 6

PolygonObj New

Description

Return Value

Comments

VWHVEM

Pol ygonObj _New(HCHUNK hChunk,
VWHVEM whPar ent ,
int nPts,

LPPQO NT | pPoi nt s)

Creates a polygon object at the specified location in the current application window.

Parameter Description
hChunk Handle to the memory section containing the object.
whParent Handle to the parent object (symbol, group, or

wizard) that will contain this object. O indicates
there is no parent object.

nPts Specifies the number of pointsin the array. This
value must be at least 2.

[pPoints Points to an array of POINT structures. Each
structure in the array specifies a point.

The return value is the handle of the object if the function is successful. Otherwise,
it iswhNull.

None.

PolylineObj_ New

Description

Return Value

Comments

VWHVEM

Pol yl i neQbj _New(HCHUNK hChunk,
VWHVEM whPar ent ,
int nPts,

LPPOI NT | pPoi nt s)

Creates a polyline object at the specified location in the current application window.

Parameter Description
hChunk Handle to the memory section containing the object.
whParent Handle to the parent object (symbol, group, or

wizard) that will contain this object. O indicates
there is no parent object.

nPts Specifies the number of pointsin the array. This
value must be at least 2.

IpPoints Points to an array of POINT structures. Each
structure in the array specifies a point.

The return value is the handle of the object if the function is successful. Otherwise,
it iswhNull.

None.

Wizard API Function Reference

6-47

RealTrendObj_New

Description

VWHVEM

Real Tr endObj _New(HCHUNK hChunk,

VWHVEM whPar ent ,
int left,

int top,

int right,

int bottom
LPSTR conment ,
LONG chart Col or,
LONG bor der Col or,
WORD sanpl eUni ts,
DWORD sanpl eTi ne,
DWORD sanpl es,
WORD opti ons)

Creates areal time trend object at the specified location in the current application

window.

Parameter Description

hChunk Handle to the memory section containing the object.

whParent Handle to the parent object (symbol, group, or
wizard) that will contain this object. O indicates
there is no parent object.

left Specifies the x-coordinate of the upper-left corner.

top Specifies the y-coordinate of the upper-left corner.

right Specifies the x-coordinate of the lower-right corner.

bottom Specifies the y-coordinate of the lower-right corner.

comment Points to a null-terminated string containing a
comment for the real time trend object.

chartColor Specifies the color of the chart's background. Colors
are specified in Windows standard RGB format.

borderColor Specifies the color of the chart's border. Colors are
specified in Windows standard RGB format.

sampleUnits Specifies the flags that determine the measurement

units for the sampleTime parameter. This parameter
can be one of the following values:

Value Meaning

TIME_MSEC Specifies units as
milliseconds.

TIME_SEC Specifies units as

seconds.

6-48 Chapter 6

Value Meaning
TIME_MIN Specifies units as
minutes.
TIME_HR Specifies units as
hours.
sampleTime Specifies the time between samplesin units

specified by the sampleUnits parameter. This
parameter can be avalue from 1 to 999.

samples Specifies the number of samples displayed in the
chart. This value must be at least 2 and no greater
than 1024.

options Specifies the flags that determine the trend options.

This parameter can be a combination of the
following values:

Value Meaning

TREND_MEM_UPDATE Specifies trend
updates only when

thetrend isin
memory.
Return Value The return value is the handle of the object if the function is successful. Otherwise,
it iswhNull.
Comments If azero (0) is returned, invalid sampleUnits (less than 2 or greater than 1024).

Defaults are used for labels, colors and pens.

Wizard API Function Reference

6-49

Rect_Scale
VO D
Rect _Scal e(LPRECT dest,
LPRECT ol d,
LPRECT new,
int flags)
Description

Linearly scales the rectangle supplied using the old and new rectangles specified.

Parameter Description

dest Pointsto a RECT structure that defines the original
rectangle that was based upon the original rectangle.
The scaled rectangle will be returned in this
parameter.

old Pointsto a RECT structure that defines the original
rectangle.

new Points to a RECT structure that defines the new
rectangle.

flags Specifies the flags that determine the scaling mode.

This parameter can be a combination of the
following values:

Value Meaning

0 SCALE X1|
SCALE X2|
SCALE Y1|
SCALE Y2.

Specifies scaling of
all coordinates. The
coordinates are
absolute.

SCALE X1 Specifies linear
scaling of the x-
coordinate of the
top-left corner.

LOFFSET_X1 Specifies the x-
coordinate of the
top-left corner
should retain the
same offset from the
left edge of the
rectangle.

ROFFSET_X1 Specifies the x-
coordinate of the
top-left corner
should retain the
same offset from the
right edge of the
rectangle.

6-50

Chapter 6

Value

Meaning

OFFSET X1

SCALE_X2

LOFFSET_X2

ROFFSET X2

OFFSET_X2

SCALE_Y1

TOFFSET_Y1

BOFFSET_Y1

The same as
LOFFSET_X1.

Specifies linear
scaling of the x-
coordinate of the
lower-right corner.

Specifiesthe x-
coordinate of the
lower-right corner
should retain the
same offset from the
left edge of the
rectangle.

Specifiesthe x-
coordinate of the
lower-right corner
should retain the
same offset from the
right edge of the
rectangle.

The same as
ROFFSET_X2.

Specifies linear
scaling of they-
coordinate of the
top-left corner.

Specifiesthe y-
coordinate of the
top-left corner
should retain the
same offset from the
top edge of the
rectangle.

Specifiesthe y-
coordinate of the
top-left corner
should retain the
same offset from the
bottom edge of the
rectangle.

Wizard API Function Reference 6-51

Value Meaning

OFFSET_Y1 The sameas
LOFFSET_Y 1.

SCALE Y2 Specifies linear
scaling of they-

coordinate of the
lower-right corner.

TOFFSET_Y2 Specifiesthe y-
coordinate of the
lower-right corner
should retain the
same offset from the
top edge of the
rectangle.

BOFFSET_Y2 Specifiesthey-
coordinate of the
lower-right corner
should retain the
same offset from the
bottom edge of the
rectangle.

OFFSET_Y2 The sameas
BOFFSET_Y2.

SCALE_REL Specifies that the
coordinates are
relative to the origin
of therectangle. If
thisflag isnot set
then the coordinates
are assumed to be
absolute.

Return Value None.

Comments If the scaling mode SCALE_REL is set then the coordinates will be unaffected
when SCALE_X1, SCALE X2, SCALE_Y1,or SCALE_Y2 areused. The_X1
flags cannot be combined. Likewisefor the_X2, Y1,and _Y2flags.

6-52 Chapter 6

RectangleObj_ New

VWHVEM

Rect angl eQbj _New(HCHUNK hChunk,
VWHVEM whPar ent ,

int left,
int top,
int right,
int bottom
Description Creates arectangle object at the specified location in the current application
window.
Parameter Description
hChunk Handle to the memory section containing the object.
whParent Handle to the parent object (symbol, group, or
wizard) that will contain this object. O indicates
there is no parent object.
left Specifies the x-coordinate of the upper-left corner.
top Specifies the y-coordinate of the upper-left corner.
right Specifies the x-coordinate of the lower-right corner.
bottom Specifies the y-coordinate of the lower-right corner.
Return Value The return value is the handle of the object if the function is successful. Otherwise,
it iswhNull.

Comments None.

Wizard API Function Reference 6-53

RectReal Scale

Description

va D

Rect Real _Scal e(LPRECTREAL dest,

LPRECT ol d,
LPRECT new,
int flags)

Linearly scales the rectangle, with REAL coordinates, using the old and new

rectangles specified.

Parameter Description

dest Points to a RECTREAL structure that defines the
original rectangle that was based upon the original
rectangle. The scaled rectangle will be returned in
this parameter.

old Pointsto a RECT structure that defines the original
rectangle.

new Pointsto a RECT structure that defines the new
rectangle.

flags Specifies the flags that determine the scaling mode.

This parameter can be a combination of the
following values:

Value Meaning

0 SCALE X1|
SCALE X2|
SCALE Y1|
SCALE Y2.

Specifies scaling of
all coordinates. The
coordinates are
absolute.

SCALE X1 Specifies linear
scaling of the x-
coordinate of the

top-left corner.

Specifiesthe x-
coordinate of the
top-left corner
should retain the
same offset from the
left edge of the
rectangle.

Specifiesthe x-
coordinate of the
top-left corner
should retain the
same offset from the
right edge of the
rectangle.

LOFFSET_X1

ROFFSET_X1

6-54

Chapter 6

Value

Meaning

OFFSET X1

SCALE_X2

LOFFSET_X2

ROFFSET X2

OFFSET_X2

SCALE_Y1

TOFFSET_Y1

BOFFSET_Y1

OFFSET_Y1

The same as
LOFFSET_X1.

Specifies linear
scaling of the x-
coordinate of the
lower-right corner.

Specifiesthe x-
coordinate of the
lower-right corner
should retain the
same offset from the
left edge of the
rectangle.

Specifiesthe x-
coordinate of the
lower-right corner
should retain the
same offset from the
right edge of the
rectangle.

The same as
ROFFSET_X2.

Specifies linear
scaling of they-
coordinate of the
top-left corner.

Specifiesthe y-
coordinate of the
top-left corner
should retain the
same offset from the
top edge of the
rectangle.

Specifiesthe y-
coordinate of the
top-left corner
should retain the
same offset from the
bottom edge of the
rectangle.

The same as
LOFFSET_Y1.

Wizard API Function Reference 6-55

Value Meaning
SCALE Y2 Specifies linear
scaling of they-

coordinate of the
lower-right corner.

TOFFSET_Y2 Specifiesthe y-
coordinate of the
lower-right corner
should retain the
same offset from the
top edge of the
rectangle.

BOFFSET_Y2 Specifiesthey-
coordinate of the
lower-right corner
should retain the
same offset from the
bottom edge of the
rectangle.

OFFSET_Y2 The sameas
BOFFSET_Y2.

SCALE_REL Specifies that the
coordinates are
relative to the origin
of therectangle. If
thisflag is not set
then the coordinates
are assumed to be
absolute.

Return Value None.

Comments If the scaling mode SCALE_REL is set then the coordinates will be unaffected
when SCALE_X1, SCALE X2, SCALE_Y1,or SCALE_Y2 areused. The_X1
flags cannot be combined. Likewisefor the_X2, Y1,and Y2 flags.

6-56 Chapter 6

RRectangleObj_ New

VWHVEM

RRect angl eCbj _New(HCHUNK hChunk,
VWHVEM whPar ent ,

int left,
int top,
int right,
int bottom
int rrwWdth,
int rrHeight)
Description Creates arounded corner rectangle object at the specified location in the current
application window.
Parameter Description
hChunk Handle to the memory section containing the object.
whParent Handle to the parent object (symbol, group, or
wizard) that will contain this object. O indicates
there is no parent object.
left Specifies the x-coordinate of the upper-left corner.
top Specifies the y-coordinate of the upper-left corner.
right Specifies the x-coordinate of the lower-right corner.
bottom Specifies the y-coordinate of the lower-right corner.
rrwidth Specifies the width of the ellipse used to draw the
rounded corners.
rrHeight Specifies the height of the ellipse used to draw the
rounded corners.
Return Value The return value is the handle of the object if the function is successful. Otherwise,
it iswhNull.

Comments None.

Wizard API Function Reference

6-57

SizeLnk_New

Description

VWHVEM

Si zeLnk_New(HCHUNK hChunk,

VHVEM whQbj ,

WORD | i nkType,
WORD anchor Type,
LPSTR expressi on,
REAL mi nVal ue,
REAL naxVal ue,

i nt m nPercent,

i nt maxPercent)

Creates a horizontal or vertical sizelink for the object specified.

Parameter Description
hChunk Handle to the memory section containing the object
for which the link is being created.
whODbj Handle to the object for which the link is being
created.
linkType Specifies the flags that determine the link type. This
parameter can be one of the following values:
Value Meaning
VERT_LINK Specifies avertical
link.
HORIZ_LINK Specifiesa
horizontal link.
anchorType Specifies the flags that determine the anchor type.

This parameter can be one of the following values:

Value

Meaning

LINK_LEFT

LINK_MIDDLE

LINK_RIGHT

Specifies that the
object will be
anchored at the
object's left side.
Thisvaueisvalid
foraHORIZ_LINK.

Specifies that the
object will be
anchored at the
object's horizontal
midpoint. Thisvalue
isvalidfor a
HORIZ_LINK.

Specifies that the
object will be
anchored at the
object'sright side.
Thisvaueisvalid
foraHORIZ_LINK.

6-58

Chapter 6

Return Value

Comments

Value Meaning

LINK_TOP Specifies that the
object will be
anchored at the

object'stop. This
vaueisvalid for a
VERT_LINK.

LINK_CENTER Specifies that the
object will be
anchored at the
object's vertical
midpoint. Thisvalue
isvalidfor a
VERT_LINK.

LINK_BOTTOM Specifies that the
object will be
anchored at the
object's bottom. This
valueisvalid for a

VERT_LINK.
expression Points to a null-terminated string containing the
analog expression or tagname to use for the link.
minValue Specifies the value when the object isits smallest
size.
max\Value Specifies the value when the object is its largest
size.
minPercent Specifies the percentage, from 0 to 100, of the

object's defined width (HORIZ_LINK) or height
(VERT_LINK) that the object will be when the
expression is at the minValue.

maxPercent Specifies the percentage, from 0 to 100, of the
object's defined width (HORIZ_LINK) or height
(VERT_LINK) that the object will be when the
expression is at the maxValue.

Thereturn value is the handle of the link if the function is successful. Otherwise, it
iswhNull.

If azero (0) isreturned, expression is NULL, too long or invalid linkType, invalid
anchor Type.

Wizard API Function Reference

6-59

SliderLnk_New

Description

VWHVEM

Sl i der Lnk_New(HCHUNK hChunk,

VHVEM whQbj ,

WORD | i nkType,
WORD r ef er enceType,
LPSTR t agnane,

REAL mi nVal ue,

REAL naxVal ue,

int mnPosition,

i nt maxPosition)

Creates a horizontal or vertical slider touch link for the object specified.

Parameter Description
hChunk Handle to the memory section containing the object
for which the link is being created.
whODbj Handle to the object for which the link is being
created.
linkType Specifies the flags that determine the link type. This
parameter can be one of the following values:
Value Meaning
VERT_LINK Specifies avertical
link.
HORIZ_LINK Specifiesa
horizontal link.
referenceType Specifies the flags that determine the reference type.

This parameter can be one of the following values:

Value

Meaning

LINK_LEFT

LINK_MIDDLE

Specifies that the
object will be
moved using the
object's left side as
itsorigin. Thisvalue
isvalidfor a
HORIZ_LINK.

Specifies that the
object will be
moved using the
object's horizontal
midpoint asits
origin. Thisvaueis
valid for a
HORIZ_LINK.

6-60

Chapter 6

Return Value

Comments

Value Meaning
LINK_RIGHT Specifies that the
object will be

moved using the
object'sright side as
itsorigin. Thisvaue
isvalid for a
HORIZ_LINK.

LINK_TOP Specifies that the
object will be
moved using the
object'stop asits
origin. Thisvalueis
valid for a
VERT_LINK.

LINK_CENTER Specifies that the
object will be
moved using the
object's vertical
midpoint asits
origin. Thisvalueis
valid for a
VERT_LINK.

LINK_BOTTOM Specifies that the
object will be
moved using the
object's bottom as its
origin. Thisvalueis
valid for a
VERT_LINK.

tagname Points to a null-terminated string containing the
analog tagname to use for the link.

minValue Specifies the value when the object is at its highest
(VERT_LINK) or leftmost (HORIZ_LINK)
position.

maxValue Specifies the value when the object is at its lowest
(VERT_LINK) or rightmost (HORIZ_LINK)
position.

minPosition Specifies the number of pixels the object will move
up (VERT_LINK) or left (HORIZ_LINK) fromits
current position in relation to the val ues specified
for the minValue and maxValue parameters.

maxPosition Specifies the number of pixelsthe object will move
down (VERT_LINK) or right (HORIZ_LINK) from
its current position in relation to the values specified
for the minValue and maxValue parameters.

Thereturn value is the handle of the link if the function is successful. Otherwise, it
iswhNull.

If azero (0) isreturned, tagnameis NULL, too long or invalid linkType or invalid
referenceType.

Wizard API Function Reference 6-61

Stmt_New

Description

Return Value

Comments

EXPR

Stmt_New(HCHUNK hChunk,

LPSTR pStnt Str,

LPI NT errorCol)

Creates and validates a block of statements and returns a handle to the validated

statement.

Parameter Description

hChunk Handle to the memory section containing the object
for which the statement is being created.

pSmtStr Points to a null-terminated string containing a block
of statements. Each statement must be separated by
aCR-LF pair ("\r\n").

len Specifies the number of bytes in the string.

errorCol Points to an integer variable that indicates the

character position where a syntax error occurred in
the block of statements. This parameter is returned
when thereis an error, as indicated when the return
value iswhNull.

Thereturn value is the handle of the statement block if the function is successful.

Otherwise, it iswhNull.

None.

6-62

Chapter 6

StmtTouchLnk_ New

Description

VWHVEM

St nt TouchLnk_New(HCHUNK hChunk,

VWHVEM whQbj ,

EXPR st nt Down,
EXPR st nt Up,

EXPR st nt Wi | e,
DWORD dwwhi | eFr eq,
BYTE cKeyFl ags,
WORD wWVi rt Key)

Creates an action touch link for the object specified. Statements can be associated
with the up, down, and while down conditions for the object.

Parameter

Description

hChunk

whObj

stmtDown

stmtUp

stmtWhile

dwWhileFreq

cKeyFlags

Handle to the memory section containing the object
for which the link is being created.

Handle to the object for which the link is being
created.

Handle to the block of statements that execute when
the touch link button for the object isinitially
pressed. This parameter should be whNull if no
statements are desired.

Handle to the block of statements that execute when
the touch link button for the object isreleased. This
parameter should be whNull if no statements are
desired.

Handle to the block of statements that execute while
the touch link button for the object is held down.
This parameter should be whNull if no statements
are desired.

Specifies the frequency (in milliseconds) that the
stmtWhile block of statements will execute.

Specifies the flags used when a keyboard key is
assigned to thislink. This parameter can be a
combination of the following values:

Value Meaning

TOUCH_KS SHIFT Specifiesthe SHIFT
key must be held
down in addition to
the key specified.

TOUCH_KS CTRL Specifiesthe CTRL
key must be held
down in addition to
the key specified.

0 Specifies that only
the specified key
must be held down.

Wizard API Function Reference 6-63

Return Value

Comments

StrinputLnk_New

Description

Parameter

Description

wVirtKey

Specifies the keyboard key equivaent assigned to
thislink. Thisvalueis 0 if thereis no keyboard
equivalent.

Thereturn value is the handle of the link if the function is successful. Otherwise, it

iswhNull.

None.

WHVEM

Str 1l nput Lnk_New(HCHUNK hChunk,

VWHVEM whCbj ,
LPSTR t agnane,
LPSTR user Msg,
BOCOL bUseKeypad,
BOOL bEchoChars,
BOCL bl nput Onl y,
BYTE cKeyFl ags,
WORD wWVi rt Key)

Creates a string (message) input link for the object specified.

Parameter Description

hChunk Handle to the memory section containing the object
for which thelink is being created.

whObj Handle to the object for which the link is being
created.

tagname Points to a null-terminated string containing the
string tagname to use for the link.

userMsg Points to a null-terminated string containing the
message or instruction to display if the bUseKeypad
option is enabled.

bUseKeypad Specifies the use of an on-screen keypad for
entering new values if this value is non-zero.

bEchoChars Specifiesif the characters being input will be
displayed asthey are input. A value of FALSE will
prevent sensitive data, such as a password, from
being displayed on the screen.

blnputOnly Specifiesthis link as input only, the value entered

will not be displayed, if this value is non-zero. This
setting only applies to objects that have text display
associated with them (for example, a push button).

6-64

Chapter 6

Return Value

Comments

Parameter Description

cKeyFlags Specifies the flags used when a keyboard key is
assigned to thislink. This parameter can be a
combination of the following values:

Value Meaning

TOUCH_KS SHIFT Specifiesthe SHIFT
key must be held
down in addition to
the key specified.

TOUCH_KS CTRL Specifiesthe CTRL
key must be held
down in addition to
the key specified.

0 Specifies that only
the specified key
must be held down.

wVirtKey Specifies the keyboard key equivalent assigned to
thislink. Thisvalueis 0 if thereis no keyboard
equivalent.

Thereturn value is the handle of the link if the function is successful. Otherwise, it
iswhNull.

If azero (0) isreturned, tagnameis NULL, too long or invalid or, userMsg is
NULL or too long.

StrOutputLnk _New

Description

Return Value

Comments

VWHVEM

St r Qut put Lnk_New(HCHUNK hChunk,
VWHVEM whQoj ,
LPSTR expr essi on)

Creates a string (message) output link for the object specified.

Parameter Description

hChunk Handle to the memory section containing the object
for which the link is being created.

whODbj Handle to the object for which the link is being
created.

expression Points to a null-terminated string containing the

string expression or tagname to use for the link.

Thereturn value is the handle of the link if the function is successful. Otherwise, it
iswhNull.

If azero (0) isreturned, expression isNULL, too long or invalid.

Wizard API Function Reference 6-65

StrTag_Setinfo

Description

Return Value

Comments

int
StrTag_Set | nf o(DBHND dbHnd,
LP_STRTAG NFO | pStr 1 nf o)

Sets the string information for a database tagname with the given handle.

Parameter Description

dbHNd Handle to the database tagname.

[pStrinfo Pointer to the string information structure.
Error code.

None.

SymbolObj_ New

Description

Return Value

Comments

VEM

Synbol Gbj _New(HCHUNK hChunk,
VWHVEM whPar ent ,
int left,
int top,
int right,
int bottom

Creates a symbol object at the specified location in the current application window.
Populate the symbol with other objects by using this object's handle as the parent
handle.

Parameter Description
hChunk Handle to the memory section containing the object.
whParent Handle to the parent object (symbol, group, or

wizard) that will contain this object. O indicates
there is no parent object.

left Specifies the x-coordinate of the upper-left corner.
top Specifies the y-coordinate of the upper-left corner.
right Specifies the x-coordinate of the lower-right corner.
bottom Specifies the y-coordinate of the lower-right corner.

The return value is the handle of the object if the function is successful. Otherwise,
it iswhNull.

None.

6-66 Chapter 6

Tag_ Find

DBHND
Tag_Fi nd(LPSTR t agnane)

Description Returns the handle of the database tagname with the given name.
Parameter Description
tagname Points to a null-terminated string containing the
database tagname.
Return Value Handle to the tagname found. Otherwise, it isO.
Comments None.

Tag FindApplTopicltem

DBHND
Tag_Fi ndAppl Topi cltem LPSTR application,
LPSTR t opi c,
LPSTR i tem
Description Returns the handle of the database tagname with the given 1/O application, topic and
item.
Parameter Description
application Points to a null-terminated string containing the
application name (for example, "EXCEL"). The
application can aso include the node name (for
example, "\NODE\EXCEL").
topic Points to a null-terminated string containing the 1/0
topic (for example, "SHEET1.XLS").
item Points to a null-terminated string containing the 1/0
item (for example, "R1C1").
Return Value Handle to the tagname found.

Comments If the tagname is not found, O is returned.

Wizard API Function Reference 6-67

Tag_GetAccessinfo

Description

Return Value

Comments

I nt

Tag_Get Accessl nfo(DBHND dbHnd,
LP_TAGACCESSI NFO | pAccessl nf 0)

Returns the access information for the database tagname with the given handle.

Parameter Description

dbHNd Handle to the database tagname.
IpAccessinfo Pointer to the access information structure.
Error code.

None.

Tag GetGroup

Description

Return Value

Comments

DBHND
Tag_Get G oup(DBHND dbHnd)

Returns the group handle for the database tagname with the given handle.
Parameter Description

dbHNd Handle to the database tagname.

Handle to the group handle for the database tagname. A vaue of 0 indicates that the
database tagname belongs to the system group.

If dbHNnd isNULL, azero (0) isreturned.

Tag_Getinfo

Description

Return Value

Comments

I nt

Tag_GCet | nf o(DBHND dbHnd,
LP_TAG NFO | pTagl nf 0)

Returns the general information for the database tagname with the given handle.
Parameter Description

IpTaglnfo Pointsto a TAGINFO structure that returns general
information for the database tagname.

Thereturn valueis the error status of the function. 0 indicates success. A non-zero
valueisan error status.

None.

6-68 Chapter 6

Tag_GetRetentivelnfo

I nt

Tag_Cet Ret enti vel nf o(DBHND dbHnd,
LP_TAGRETENTI VEI NFO | pRet enti vel nf 0)

Description Returns the retentive information for a database tagname with the given handle.
Parameter Description
dbHNd Handle to the database tagname.
|pRetentivel nfo Pointer to the retentive information structure.
Return Value Error code.
Comments None.

Tag_GetUnigueName

I nt

Tag_Get Uni queNane(LPSTR basenane,
LPSTR t agnane)

Description Returns a unique tagname derived from the basename supplied.
Parameter Description
basename Points to a null-terminated string containing the

basename for the database tagname. If the basename
is not unique, a unique name is generated by
indexing the basename.

tagname Points to a null-terminated string returning the
unique database tagname.

Return Value Thereturn valueis the error status of the function. 0 indicates success. A non-zero
valueisan error status.

Comments The area of memory specified by tagname must be large enough to store a full
tagname (NL_TAGNAME).

Tag_GetValueAlarm

I nt

Tag_GCet Val ueAl arn{ DBHND dbHnd,
LP_VALALARM NFO | pVal Al ar m

Description Returns the value alarm information for a database tagname with the given handle.
Parameter Description
dbHNd Handle to the database tagname.
IpValAlarm Pointer to the value alarm tagname information
structure.
Return Value Error code.

Comments None.

Wizard API Function Reference 6-69

Tag New

DBHND

Tag_New(LPSTR tagnane,
WORD t agType,
WORD accessType,
LPSTR comment,
LP_TAGACCESSI NFO | pAccessl nf 0)

Description Creates a database tagname with the specified name, type, and comment.
Parameter Description
tagname Points to a null-terminated string containing the
database tagname.
tagType Specifies the flags that determine the tagname type.

This parameter can be one of the following values:

Value

Meaning

TYPE_DISCRETE

TYPE_INTEGER

Specifies adiscrete
tagname.
Specifies an integer
tagname.

TYPE_REAL Specifies afloating
point tagname.
TYPE_STRING Specifiesastring

TYPE_ANALOG

TYPE_ALMGRP

TYPE_HIST

TYPE_TAGID

(message) tagname.

Specifies an analog
tagname. Thisisthe
same as
TYPE_REAL.

Specifies an indirect
alarm group
reference. The
accessType
parameter is not
used for thistype.

Specifies a historica
trend tagname. The
accessType
parameter is not
used for thistype.

Specifies atagname
ID type. The
accessType
parameter is not
used for thistype.

6-70

Chapter 6

Return Value

Comments

Parameter Description

accessType Specifies the flags that determine the access mode
for the tagname. This parameter can be one of the
following values:

Value Meaning
ACCESS MEM Specifies a memory
access tagname.
ACCESS_DDE Specifiesan I/O
access tagname.
ACCESS_IND Specifies an indirect
access tagname.
comment Points to a null-terminated string containing the
comment for the database tagname.
IpAccessinfo Points to an TAGACCESSINFO structure that

contains the 1/0O access information if the access
type ACCESS DDE isrequested. This parameter
should be NULL for al other access types.

The return value is the handle of the database tagname if the function is successful.
Otherwise, it isO.

This function will fail if the database tagname aready exists or if tagType or
accessType areinvalid.

Tag_SetAccessinfo

Description

Return Value

Comments

I nt

Tag_Set Accessl nfo(DBHND dbHnd,
LP_TAGACCESSI NFO | pAccessl nf 0)

Sets the access information for the database tagname with the given handle.

Parameter Description

dbHNd Handle to the database tagname.
IpAccessinfo Pointer to the access information structure.
Error code.

None.

Wizard API Function Reference 6-71

Tag_SetDeviationAlarm

Description

Return Value

Comments

I nt

Tag_Set Devi ati onAl arm(DBHND dbHnd,
LP_DEVALARM NFO | pDevAl arm

Sets the deviation alarm information for a database tagname with the given handle.

Parameter Description

dbHNd Handle to the database tagname.

IpDevAlarm Pointer to the deviation alarm information structure.
Error code.

None.

Tag_SetDiscAlarm

Description

Return Value

Comments

1 nt

Tag_Set Di scAl arn{ DBHND dbHnd,
LP_DI SCALARM NFO | pDi scAl arm

Sets the discrete alarm information for a database tagname with the given handle.

Parameter Description

dbHnd Handle to the database tagname.

IpDiscAlarm Pointer to the discrete alarm information structure.
Error code.

None.

Tag_SetEventinfo

Description

Return Value

Comments

1 nt

Tag_Set Event | nf o(DBHND dbHnd,
LP_TAGEVENTI NFO | pEvent | nf 0)

Sets the event information for the database tagname with the given handle.

Parameter Description

dbHnd Handle to the database tagname.
IpEventlnfo Pointer to the event information structure.
Error code.

None.

6-72 Chapter 6

Tag_ SetGroup

I nt

Tag_Set G oup(DBHND dbHnd,
DBHND dbGr oup)

Description Sets the group handle for the database tagname with the given handle.

Parameter Description

dbHNd Handle to the database tagname.

dbGroup Handle to the group to set for the database tagname.
Return Value The return valueis the error status of the function. O indicates success. A non-zero

valueisan error status.

Comments None.

Tag_SetInfo

I nt

Tag_Set | nf o(DBHND dbHnd,
LP_TAG NFO | pTagl nf 0)

Description Sets the information specified in the IpTaglnfo structure into the tagname specified
by dbHnd.
Parameter Description
dbHNd Handle to the tagname.
IpTaglnfo Pointer to the TAGINFO structure.
Return Value Error code, 0 if successful.
Comments None.

Tag_ SetRateOfChangeAlarm

I nt

Tag_Set Rat eOf ChangeAl ar n{ DBHND dbHnd,
LP_ROCALARM NFO | pRocAl ar m

Description Sets the rate of change alarm information for a database tagname with the given
handle.
Parameter Description
dbHNd Handle to the database tagname.
IpRocAlarm Pointer to the rate of change alarm information
structure.
Return Value Error code.

Comments None.

Wizard API Function Reference 6-73

Tag_SetRetentivelnfo

Description

Return Value

Comments

I nt

Tag_Set Ret enti vel nf o(DBHND dbHnd,
LP_TAGRETENTI VEI NFO | pRet enti vel nf 0)

Sets the retentive information for a database tagname with the given handle.

Parameter Description

dbHNd Handle to the database tagname.

|pRetentivel nfo Pointer to the retentive information structure.
Error code.

None.

Tag_SetScalinginfo

Description

Return Value

Comments

I nt

Tag_Set Scal i ngl nfo(DBHND dbHnd,
LP_TAGSCALEI NFO | pScal el nf o)

Sets the scaling information for a database tagname with the given handle.

Parameter Description

dbHNd Handle to the database tagname.

IpScalel nfo Pointer to the scaling information structure.
Error code.

None.

Tag_SetValueAlarm

Description

Return Value

Comments

I nt

Tag_Set Val ueAl arn{ DBHND dbHnd,
LP_VALALARM NFO | pVal Al ar m

Sets the value alarm information for a database tagname with the given handle.

Parameter Description

dbHNd Handle to the database tagname.

IpValAlarm Pointer to the value alarm information structure.
Error code.

None.

6-74 Chapter 6

Text GetExtent

VO D
Text _Get Ext ent (LPLOGFONT | Fnt,
LPI NT wi dth
LPI NT hei ght
int |en,
LPSTR text)
Description Returns the width and height of the text in pixels, based upon the logical font

specified. This function should be used instead of the Windows GetTextExtent
function when cal culating the metrics of text to be used in InTouch objects.

Parameter Description

IFnt Logical font structure.

width Returned width value of text in pixels.

height Returned height value of text in pixels.

len Length of string.

text Text string for which extent is being requested.
Return Value None.

Comments None.

Wizard API Function Reference 6-75

TextObj_New

VWHVEM

Text Obj _New(HCHUNK hChunk,

VWHAMEM whPar ent

int left,
int top,
int right,
int bottom
LPSTR text,
WORD opt i ons)
Description Creates atext object at the specified location in the current application window.
Parameter Description
hChunk Handle to the memory section containing the object.
whParent Handle to the parent object (symbol, group, or
wizard) that will contain this object. O indicates
there is no parent object.
left Specifies the x-coordinate of the upper-left corner.
top Specifies the y-coordinate of the upper-left corner.
right Specifies the x-coordinate of the lower-right corner.
bottom Specifies the y-coordinate of the lower-right corner.
text Points to a null-terminated string containing the text
to display.
options Specifies the flags that determine how to draw the
text. This parameter can be one of the following
values:
Value Meaning
TEXT_CENTER Centers text
horizontally.
TEXT_LEFT Left-aligns text.
TEXT_RIGHT Right-aligns text.
Return Value Thereturn value is the handle of the object if the function is successful. Otherwise,
it iswhNull.

Comments None.

6-76

Chapter 6

TrendObj_Setltem

Description

Return Value

Comments

BOOL

TrendObj _Set | t en{ HCHUNK hChunk,
VWHVEM whQbj
int index,

LPSTR expressi on,
LONG penCaol or,
int penWdth)

Configures an item within the specified historical or real time trend object. Each
item corresponds to a pen in the trend.

Parameter Description

hChunk Handle to the memory section containing the real
time or historical trend object.

whODbj Handle to the real time or historical trend object.

index Specifies the pen being modified. This value must

be at least 1 and no greater than the allowed number
of pens for the trend object.

expression Points to a null-terminated string containing the
analog expression or tagname to use for the pen.

penColor Specifies the pen color. Colors are specified in
Windows standard RGB format.

penWidth Specifies the pen width.

Thereturn valueis TRUE if the function is successful. Otherwise, it is FALSE.

A zero (0) isreturned, if whObj isinvalid or if length of expression is greater than
MAX_EXPR_STRLEN.

Wizard API Function Reference 6-77

TrendObj_SetTimelnfo

Description

Return Value

Comments

BOOL

TrendObj _Set Ti mel nf o(HCHUNK hChunk,

VWHVEM whQbj ,

int nMajorDiv,

LONG ngj or Di vCol or,
int nMnorDiv,

LONG mi nor Di vCol or,
int nLabel Div,

LONG | abel Di vCol or,
WORD opti ons,

LPSTR ti meFor mat)

Configures time axis settings for the specified historical or real time trend object.

Parameter Description

hChunk Handle to the memory section containing the real
time or historical trend object.

whODbj Handle to the real time or historical trend object.

nMajorDiv Specifies the number of mgjor division lines. This

majorDivColor

nMinorDiv

minor DivColor

nLabelDiv

|abelDivColor

options

timeFormat

value must be an even multiple of the number of the
'nLabelDiv' parameter.

Specifies the major division line color. Colors are
specified in Windows standard RGB format.

Specifies the number of minor division lines
between major division lines.

Specifies the minor division line color. Colors are
specified in Windows standard RGB format.

Specifies the number of major divisions per time
label.

Specifies the label text color. Colors are specified in
Windows standard RGB format.

Specifies the flags that determine the time axis
options for the trend object. This parameter can be a
combination of the following values:

Value Meaning

TREND BOTTOM_LABHLS Specifiestime labels
at the bottom.

TREND TOP LABH.S Specifiestime labels
at the top.

Points to a null-terminated string containing the
format specification for the time labels.

Thereturn valueis TRUE if the function is successful. Otherwise, it is FALSE.

A zero (0) isreturned, if nMajorDiv, nMinorDiv, nLabelDiv isless than O or greater
than 9999 or whObj isinvalid.

6-78

Chapter 6

TrendObj_SetValuelnfo

Description

BOOL

TrendObj _Set Val uel nfo(HCHUNK hChunk,

VWHVEM whOQbj ,

int nMpjorDiv,

LONG maj or Di vCol or,
int nMnorDiv,

LONG mi nor Di vCol or,
int nLabel Div,
LONG | abel Di vCol or,
WORD opti ons,

REAL m nVal ue,

REAL nexVal ue)

Configures the value axis settings within the specified historical or real time trend

object.

Parameter Description

hChunk Handle to the memory section containing the real
time or historical trend object.

whODbj Handle to the real time or historical trend object.

nMajorDiv Specifies the number of mgjor division lines. This

majorDivColor

nMinorDiv

minor DivColor

nLabelDiv

|abelDivColor

options

minValue

value must be an even multiple of the number of the
'nLabelDiv' parameter.

Specifies the magjor division line color. Colors are
specified in Windows standard RGB format.

Specifies the number of minor division lines
between major division lines.

Specifies the minor division line color. Colors are
specified in Windows standard RGB format.

Specifies the number of mgjor divisions per value
label.

Specifies the label text color. Colors are specified in
Windows standard RGB format.

Specifies the flags that determine the value axis
options for the trend object. This parameter can be a
combination of the following values:

Value Meaning

TREND LEFT LABES Specifies value
labels at the left.

TREND RIGHT LABE.S Specifies value
labels at the right.

Specifies the minimum value for the range of values
to be displayed.

Wizard API Function Reference 6-79

Return Value

Comments

Parameter Description
maxValue Specifies the maximum value for the range of values
to be displayed.

Thereturn valueis TRUE if the function is successful. Otherwise, it is FALSE.

A zero (0) isreturned, if nMajorDiv, nMinorDiv, nLabelDiv isless than O or greater
than 9999 or minValue is greater than maxValue.

VisibilityLnk _New

Description

Return Value

Comments

VWHVEM
Vi sibilityLnk_New(HCHUNK hChunk,
VHVEM whObj |
LPSTR expressi on,
BOCL onOFf)
Creates avisibility link for the object specified.
Parameter Description
hChunk Handle to the memory section containing the object
for which thelink is being created.
whObj Handle to the object for which the link is being
created.
expression Points to a null-terminated string containing the
analog expression or tagname to use for the link.
onOff Specifies the desired visibility state. A value of

TRUE will cause the object to be visible when the
expression evaluates to TRUE.

Thereturn value is the handle of the link if the function is successful. Otherwise, it
iswhNull.

A zero (0) isreturned if expression isNULL, too long or invalid.

6-80 Chapter 6

WizardODbj New

VWHVEM

W zardQbj _New(HCHUNK hChunk,
VWHVEM whPar ent ,
int left,
int top,
int right,
int bottom
LPSTR dl | Nane,
int dlllndex,
WHVEM whDat a)

Description Creates awizard object at the specified location in the current application window.
Populate the wizard with other objects by using this object's handle as the parent
handle.

Parameter Description

hChunk Handle to the memory section containing the object.
This parameter should be the value of the hChunk
parameter passed to the Wizard_New function.

whParent Handle to the parent object (symbol, group, or
wizard) that will contain this object. 0 indicates
there is no parent object. This parameter is normally

0.
left Specifies the x-coordinate of the upper-left corner.
top Specifies the y-coordinate of the upper-left corner.
right Specifies the x-coordinate of the lower-right corner.
bottom Specifies the y-coordinate of the lower-right corner.
dlIName Points to a null-terminated string containing the

name of the DLL capable of creating the wizard.
This parameter should be the value of the dlIName
parameter passed to the Wizard_New function.

dilindex Specifies the unique identifier for the wizard in the
DLL. This parameter should be the value of the
index parameter passed to the Wizard_New
function.

whData Handle to the data for the wizard being created.
This parameter should be the value of the whData
parameter passed to the Wizard_New function.

Return Value The return value is the handle of the object if the function is successful. Otherwise,
it iswhNull.

Comments A zero (0) isreturned if length of dlinameis greater than 32 characters.

Wizard API Function Reference 6-81

WizProp_ Delete

int
W zProp_Del ete(HCHUNK hChunk,
WHVEM whDat a,
LPSTR nane)
Description Deletes the named wizard property.
Parameter Description
hChunk Handle to the memory section containing the wizard
data.
whData Handle to the wizard's data. Thisis the whData
parameter passed to Wizard_New or the whData
parameter passed to Wizard_Edit.
name Points to a null-terminated string containing the
property name.
Return Value The return value is the error status of the function. 0 indicates success. A non-zero

valueisan error status.

Comments Failsif the property name is not found.

WizProp_Find

int
W zProp_Fi nd(HCHUNK hChunk,
WHVEM whDat a,
LPSTR nane,
VWHVEM FAR *whPr operty)
Description Returns a handle to the named wizard property.
Parameter Description
hChunk Handle to the memory section containing the wizard
data.
whData Handle to the wizard's data. Thisisthe whData
parameter passed to Wizard_New or the whData
parameter passed to Wizard_Edit.
name Points to a null-terminated string containing the
property name.
whProperty Points to a handle to the wizard property found.
This parameter will return whNull if no property is
found in the wizard matching the name.
Return Value The return value is the error status of the function. 0 indicates success. A non-zero

valueisan error status.

Comments Failsif the property name is not found.

6-82

Chapter 6

WizProp_GetBlock

Description

Return Value

Comments

int

W zProp_Get Bl ock(HCHUNK hChunk,
VWHVEM whDat a,
LPSTR nane,
DWORD dwivax,
LPVO D dat a,

LPDWORD dwSi ze)

Returns the data for a named wizard property that contains a block of data.

Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. Thisis the whData

parameter passed to Wizard_New or the whData
parameter passed to Wizard_Edit.

name Points to a null-terminated string containing the
property name.

dwMax Specifies the maximum number of bytes to return.

data Points to the buffer to receive the property data.

dwSize Points to a DWORD that indicates the number of

bytes actually stored in the data buffer.

Thereturn valueis the error status of the function. O indicates success. A non-zero
valueisan error status.

Failsif property nameis not found. Only returns property if the property specified
by name is of type block.

Wizard API Function Reference 6-83

WizProp_GetDouble

Description

Return Value

Comments

int

W zProp_Get Doubl e(HCHUNK hChunk,

VWHVEM whDat a,
LPSTR nane,

doubl e FAR * dat a,
doubl e dat aDef)

Returns a floating point value for the named wizard property.

Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. Thisis the whData
parameter passed to Wizard_New or the whData
parameter passed to Wizard_Edit.

name Points to a null-terminated string containing the
property name.

data Points to a double that will receive the value of the
property.

dataDef Specifies the default value to return in the data if the

property is not found.

Thereturn valueis the error status of the function. O indicates success. A non-zero

valueisan error status.

Failsif property nameis not found or the property typeis not DOUBLE.

6-84

Chapter 6

WizProp_GetDWord

Description

Return Value

Comments

int

W zPr op_Get DWor d(HCHUNK hChunk,

VWHVEM whDat a,
LPSTR nane,
LPDWORD dat a,
DWORD dat aDef)

Returns a double word (32-hit) value for the named wizard property.

Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. Thisis the whData
parameter passed to Wizard_New or the whData
parameter passed to Wizard_Edit.

name Points to a null-terminated string containing the
property name.

data Points to a DWORD that will receive the value of
the property.

dataDef Specifies the default value to return in the data if the

property is not found.

Thereturn valueis the error status of the function. O indicates success. A non-zero

valueisan error status.

Failsif property nameis not found or the property type is not DWORD.

Wizard API Function Reference 6-85

WizProp_ GetExpr

Description

Return Value

Comments

int
W zProp_Get Expr (

HCHUNK hChunk,
WHVEM whDat a,
LPSTR nane,
DWORD dwivax,
LPSTR dat a,
LPSTR dat aDef)

Returns the data for a named wizard property that contains an expression.

Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. Thisis the whData
parameter passed to the Wizard_New or the
whData parameter passed to the Wizard_Edit.

name Points to a null-terminated string containing the
property name.

dwMax Specifies the maximum number of bytes to return.

data Points to the buffer to receive the property data.

dataDef Specifies the default value to return in the data if the

property is not found.

Thereturn valueis the error status of the function. O indicates success. A non-zero

valueisan error status.

Failsif property nameis not found or the property typeis not EXPR. Use this
property type for any expression, or tagname property. Thiswill expose the property
to InTouch as an expression and provide the standard support for expressions, such
as substitute tags, and automatic placeholder generation.

6-86

Chapter 6

WizProp_ GetFont

Description

Return Value

Comments

int

W zPr op_Get Font (HCHUNK hChunk,
VWHVEM whDat a,
LPSTR nane,

LPLOG-ONT | ogFont)
Returnsthe logical font data for the named wizard property.

Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. Thisis the whData

parameter passed to Wizard_New or the whData
parameter passed to Wizard_Edit.

name Points to a null-terminated string containing the
property name.
logFont Pointsto a LOGFONT structure that returns the

contents of the logical font property. LOGFONT is
aWindows structure,

Thereturn valueis the error status of the function. O indicates success. A non-zero
valueisan error status.

This function should be used instead of attempting to retrieve font settings using the
WizProp_GetBlock function. This function will isolate your code from differences
in how the LOGFONT structure is saved on al Windows and Windows NT
platforms. Also, if you are attempting to use the standard font property, ‘ww_font',
to enable toolbar font operations on your wizard, you must use this function to
retrieve the font property.

Failsif property nameis not found or the property typeisnot TEXT or BLOCK.

Wizard API Function Reference 6-87

WizProp_ GetStmt

Description

Return Value

Comments

int

W zProp_Get St mt (HCHUNK hChunk,
VWHVEM whDat a,
LPSTR nane,
DWORD dwivax,
LPSTR dat a,

LPSTR dat aDef)

Returns the data for a named wizard property that contains a statement.

Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. Thisis the whData

parameter passed to the Wizard_New or the
whData parameter passed to the Wizard_Edit.

dwMax Specifies the maximum number of bytes to return.
data Points to the buffer to receive the property data.
dataDef Specifies the default value to return in the data if the

property is not found.

Thereturn valueis the error status of the function. O indicates success. A non-zero
valueisan error status.

Failsif property nameis not found or the property typeisnot STMT. Use this
property type for any script property. Thiswill expose the property to InTouch asa
script and provide standard support for scripts, such as substitute tags and automatic
placeholder generation.

6-88 Chapter 6

WizProp_GetString

int
W zProp_Get String(HCHUNK hChunk,
VWHVEM whDat a,
LPSTR nane,
DWORD dwivax,
LPSTR dat a,
LPSTR dat aDef)
Description Returns aNULL terminated string for the named wizard property.
Parameter Description
hChunk Handle to the memory section containing the wizard
data.
whData Handle to the wizard's data. Thisisthe whData
parameter passed to Wizard_New or the whData
parameter passed to Wizard_Edit.
name Points to a null-terminated string containing the
property name.
dwMax Specifies the maximum number of bytes to return,
including the null character.
data Points to the character array to receive the property
data.
dataDef Specifies the default value to return in the data if the
property is not found.
Return Value The return value is the error status of the function. 0 indicates success. A non-zero

valueisan error status.

Comments Failsif property nameis not found or the property typeis not STRING. Do not use
this property type for expressions, tagnames or scripts. See WizProp_GetExpr or
WizProp_GetStmt for this purpose.

Wizard API Function Reference 6-89

WizProp_New

Description

Return Value

Comments

int

W zPr op_New(HCHUNK hChunk,
VHVEM whDat a,
LPSTR nane,
char type,

WHVEM FAR *whPr operty)
Creates awizard property with the name and type specified.

Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. Thisis the whData

parameter passed to Wizard_New or the whData
parameter passed to Wizard_Edit.

name Points to a null-terminated string containing the
property name.
type Specifies the flags that determine the property type.

This parameter can be one of the following values:

Value Meaning

WIZPROP_TYPE DWORD Specifiesa DWORD
datatype.

WIZPROP TYPE REAL Specifies afloating
point data type.

WIZPROP TYPE_STRING Specifiesastring
datatype.

WIZPROP TYFE BLOCK Specifies ablock
datatype.

WIZPROP TYFE FONT Specifiesafont data
type.

WIZPROP TYFE EXFR Specifies an
expression or
tagname type.

WIZPROP TYFE STMT Specifies ascript

type. A scriptisa
series of InTouch
Statements.

whProperty Points to a handle to the wizard property created.
This parameter will return whNull if the property
could not be created.

Thereturn value is the error status of the function. O indicates success. A non-zero
vaueisan error status.

Failsif property name exists.

6-90 Chapter 6

WizProp_SetBlock

int
W zProp_Set Bl ock(HCHUNK hChunk,
WHVEM whDat a,
LPSTR nane,
DWORD dwSi ze,
LPVO D dat a)
Description Sets the data for a named wizard property that contains a block of data.
Parameter Description
hChunk Handle to the memory section containing the wizard
data.
whData Handle to the wizard's data. Thisis the whData
parameter passed to Wizard_New or the whData
parameter passed to Wizard_Edit.
name Points to a null-terminated string containing the
property name.
dwSize Specifies the number of bytesin the data buffer.
data Points to the buffer containing the property data.
Return Value The return value is the error status of the function. 0 indicates success. A non-zero
valueisan error status.
Comments None.
WizProp_SetDouble
int
W zProp_Set Doubl e(HCHUNK hChunk,
VWHVEM whDat a,
LPSTR nane,
doubl e dat a)
Description Sets afloating point value for the named wizard property.
Parameter Description
hChunk Handle to the memory section containing the wizard
data.
whData Handle to the wizard's data. Thisis the whData
parameter passed to Wizard_New or the whData
parameter passed to Wizard_Edit.
name Points to a null-terminated string containing the
property name.
data Specifies the property value.
Return Value The return value is the error status of the function. 0 indicates success. A non-zero

valueisan error status.

Comments None.

Wizard API Function Reference 6-91

WizProp_SetDWord

Description

Return Value

Comments

int
W zProp_Set DWord(HCHUNK hChunk,
WHVEM whDat a,
LPSTR nane,
DWORD dat a)
Sets a double word (32-bit) value for the named wizard property.
Parameter Description
hChunk Handle to the memory section containing the wizard
data.
whData Handle to the wizard's data. Thisis the whData

parameter passed to Wizard_New or the whData
parameter passed to Wizard_Edit.

name Points to a null-terminated string containing the
property name.

data Specifies the property value.

Thereturn valueis the error status of the function. O indicates success. A non-zero
valueisan error status.

None.

WizProp_SetExpr

Description

Return Value

Comments

int

W zProp_Set Expr (HCHUNK hChunk,
VWHVEM whDat a,
LPSTR nane,

LPSTR dat a)

Sets the data for a name wizard property that contains an expression.

Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. Thisis the whData

parameter passed to the Wizard_New or the
whData parameter passed to the Wizard_Edit.

name Points to a NULL-terminated string containing the
property name.

data Points to the buffer to receive the property data.

Thereturn valueis the error status of the function. 0 indicates success. A non-zero
valueisan error status.

Use this property type for any expression, or tagname property. This will expose the
property to InTouch as an expression and provide the standard support for
expressions, such as substitute tags, and automatic placehol der generation.

6-92

Chapter 6

WizProp_SetFont

Description

Return Value

Comments

int

W zPr op_Set Font (HCHUNK hChunk,
VWHVEM whDat a,
LPSTR nane,

LPLOG-ONT | ogFont)
Setsthe logical font data for the named wizard property.

Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. Thisis the whData

parameter passed to Wizard_New or the whData
parameter passed to Wizard_Edit.

name Points to a null-terminated string containing the
property name.
logFont Pointsto a LOGFONT structure that defines the

characteristics of the logical font property.
LOGFONT is aWindows structure.

Thereturn valueis the error status of the function. 0 indicates success. A non-zero
valueisan error status.

This function should be used instead of attempting to store font settings using the
WizProp_SetBlock function. This function will isolate your code from differences
in how the LOGFONT structure is saved on al Windows and Windows NT
platforms. Also, if you are attempting to use the standard font property, ‘ww_font',
to enable toolbar font operations on your wizard, you must use this function to store
the font property.

Wizard API Function Reference 6-93

WizProp_SetStmt

Description

Return Value

Comments

int

W zProp_Set St mt (HCHUNK hChunk,
VWHVEM whDat a,
LPSTR nane,

LPSTR dat a)

Sets the data for a name wizard property that contains a statement.

Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. Thisis the whData

parameter passed to the Wizard_New or the
whData parameter passed to the Wizard_Edit.

name Points to a NULL-terminated string containing the
property name.

data Points to the buffer to receive the property data.

Thereturn valueis the error status of the function. O indicates success. A non-zero
valueisan error status.

Use this property type for any script property. This will expose the property to
InTouch as a script and provide standard support for scripts, such as substitute tags
and automatic placeholder generation.

WizProp_SetString

Description

Return Value

Comments

int

W zProp_Set String(HCHUNK hChunk,
VHVEM whDat a,
LPSTR nane,

LPSTR dat a)
SetsaNULL terminated string for the named wizard property.

Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. Thisis the whData

parameter passed to Wizard_New or the whData
parameter passed to Wizard_Edit.

name Points to a null-terminated string containing the
property name.

data Points to a null-terminated string containing the
property data.

Thereturn valueis the error status of the function. 0 indicates success. A non-zero
valueisan error status.

Do not use this property type for expressions, tagnames or scripts. See
WizProp_SetExpr or WizProp_SetStmt for this purpose.

6-94 Chapter 6

WWDIg CheckExprCitrl

int

WADI g_CheckExprCtrl (HAND hD g,
int ctrllD,
BYTE type)

Description Validates the dialog item using the standard InTouch validation of script
expressions. Error messages are automatically displayed when an error is detected.
Parameter Description
hDIg Identifies the dialog box.
ctrliD Specifies the identifier of the dialog box control that

contains text to validate as a script expression. The
control must be a Windows standard edit box
control.
type Specifies the flags that determine the expression
type. This parameter can be one of the following
values:
Value Meaning
TYPE_DISCRETE Specifies adiscrete
expression.
TYPE_INTEGER Specifies an integer
expression.
TYPE_REAL Specifies afloating
point expression.
TYPE_STRING Specifiesastring
(message)
expression.
TYPE_ANALOG Specifies an analog
expression. An
integer or floating
point expression is
allowed.
Return Value Thereturn value is the error status of the function. 0 indicates success. A non-zero

vaueisan error status.

Comments None.

Wizard API Function Reference

6-95

WWDIg CheckTagCtrl

int
WADI g_CheckTagCtrl (HWND hDl g,
int ctrllD,
BYTE type)
Description Validates the dialog item using the standard InTouch validation of database
tagnames. Error messages are automatically displayed when an error is detected.
Parameter Description
hDlg Identifies the dialog box.
ctrliD Specifies the identifier of the dialog box control that
contains text to validate as a database tagname. The
control must be a Windows standard edit box
control.

type Specifies the flags that determine the tagname type.

This parameter can be one of the following values:

Value

Meaning

TYPE_DISCRETE

TYPE_INTEGER

Specifies adiscrete
tagname.
Specifies an integer
tagname.

TYPE_REAL Specifies afloating
point tagname.
TYPE_STRING Specifiesastring

TYPE_ANALOG

TYPE_NUM

TYPE_ALMGRP

TYPE_HIST

TYPE_TAGID

TYPE_ANY

(message) tagname.

Specifies an analog
tagname. An integer
or floating point
tagname is allowed.

Specifies an integer,
floating point or
discrete tagname.

Specifies an indirect
alarm group
reference.

Specifies a historica
trend tagname.

Specifies atagname
ID type.

Specifies any
tagname type.

Thereturn value is the error status of the function. O indicates success. A non-zero
vaueisan error status.

Return Value

Comments None.

6-96

Chapter 6

WWDIg GetDoubleCtrl

Description

Return Value

Comments

int
WADI g_Get Doubl eCtrl (HWND hDl g,

int ctrllD,
REAL FAR * val ue)

Validates the dialog item using standard InTouch validation rules for floating point
values. The resulting valueis returned.

Parameter Description
hDlg Identifies the dialog box.
ctrliD Specifies the identifier of the dialog box control that

contains text to validate and convert to afloating
point value. The control must be a Windows
standard edit box control.

value Pointsto a REAL that returns the converted floating
point value.

Thereturn valueis the error status of the function. O indicates success. A non-zero
valueisan error status.

None.

WWDIg_ ProcessKeyCtrl

Description

Return Value

Comments

int
WADI g_ProcessKeyCtrl (HWAD hDl g,
i nt enabl eKeyCtrl | D,

int ctrl1D)
Processes messages to the key-equivalent handling controls.
Parameter Description
hDlg Identifies the dialog box.
enableKeyCtrlID Specifies the identifier of the dialog box control that

enables or disables the key equivalent controls. It is
used in the key equivalent combination and must be
a check box control.

ctrliD Specifies the identifier of the dialog box control to
which the message has been sent.

Thereturn valueis the error status of the function. O indicates success. A non-zero
valueisan error status.

WWDIg_ProcessK eyCtrl should be called for message sent to any of the key
equivalent controls. It will process those messages appropriately.

Wizard API Function Reference 6-97

WWDIg RegisterColorCitrl

int
WADI g_Regi sterColorCtrl (HAND hDl g,
int ctrllD,
DWORD col or)
Description Registers a dialog item to use the standard InTouch color choice dialog.
Parameter Description
hDlg Identifies the dialog box.
ctrliD Specifies the identifier of the dialog box control that
uses the standard InTouch color choice dialog. The
control must be a Windows standard list box control
with LBS_NOTIFY enabled.
color Specifiesthe initial color for the dialog box control.
Colors are specified in Windows standard RGB
format.
Return Value The return value is the error status of the function. 0 indicates success. A non-zero
valueisan error status.
Comments Make sure that WWDIg_Unregister Color Ctrl is called to free any associated

memory.

6-98

Chapter 6

WWDIg RegisterKeyCitrl

Description

Return Value

Comments

int

WADI g_Regi sterKeyCtrl (HAND hDl g,

int enabl ekeyCtrl | D,
int ctrlKeyCrllID,
int shiftKeyCrllD,
int selectKeyCtrlID,
int keyTextCtrlID,
DWORD dwPr opKey Code,
DWORD dwPr opKeyFl ags)

Registers a set of dialog items to obtain key-equivalent handling information for the

wizard.

Parameter Description

hDlg Identifies the dialog box.

enableKeyCtrlID Specifies the identifier of the dialog box control that
enables or disables the key equivalent controls. Is
used in the key equivaent combination. Must be a
check box control.

ctriKeyCtrlID Specifies the identifier of the dialog box control that
specifiesif the "ctrl" key isused in the key
equivalent combination. Must be a check box
control.

shiftkeyCtrlID Specifies the identifier of the dialog box control that
specifiesif the "shift" key is used in the key
equivalent combination. Must be a check box
control.

selectKeyCtrlID Specifies the identifier of the dialog box control that
displays the standard InTouch key selection dialog.
Must be a push button control.

KeyTextCtrlID Specifies the identifier of the dialog box control that
displays chosen key equivalent text. Must be a static
text control.

dwPropKeyCode Key code for the selected Key (zero means no key

dwPropKeyFlags

selected). Uses virtual key codes as defined in
WINDOWS.H.

Key flags values.

Value Meaning
TOUCH_KS_SHIFT Use shift key.
TOUCH_KS CTRL Use ctrl key.
0 No flags.

Thereturn value is the error status of the function. O indicates success. A non-zero

vaueisan error status.

None.

Wizard API Function Reference 6-99

WWNDIg RegisterTagNamecCitrl

Description

Return Value

Comments

int
WADI g_Regi st er TagNameCt r1 (HWND hDl g,
int ctrll1D)

Registers adialog item to respond to a double-click by displaying the standard
tagnhame selection diaog.

Parameter Description
hDlg Identifies the dialog box.
ctrliD Specifies the identifier of the dialog box control that

uses the standard Tagname Selection Dialog.

Thereturn valueis the error status of the function. 0 indicates success. A non-zero
valueisan error status.

None.

WWDIg_ScriptEdit

Description

Return Value

Comments

va D

WADI g_Scri pt Edit (HAND hDl g,
HCHUNK hChunk,
LPSTR | pStri ng)

Displays a generic script editing dialog.

Parameter Description

hDlg Identifies the dialog box.

hChunk Memory handle.

IpString Points to an area of memory that will receive the
script text.

Thereturn valueis the error status of the function. 0 indicates success. A non-zero
valueisan error status.

The caller of WWDIg_ScriptEdit isresponsible for allocating adequate memory
for the resulting script statement. The Define (STMT_STRLEN) has been provided
for that purpose. The memory allocated for the script should be globally allocated
and should be freed when no longer needed.

6-100

Chapter 6

WWDIg_ SetDoubleCitrl

Description

Return Value

Comments

int

WADI g_Set Doubl eCtrl (HAND hDl g,
int ctrllD,
REAL val ue)

Sets the dialog item with the character representation for the floating point value
specified.

Parameter Description
hDlg Identifies the dialog box.
ctrliD Specifies the identifier of the dialog box control that

contains text representing a floating point value.
The control must be a Windows standard edit box
control.

value Specifies the floating point value to convert to text.

Thereturn valueis the error status of the function. O indicates success. A non-zero
valueisan error status.

None.

WWDIg_ UnregisterColorCtrl

Description

Return Value

Comments

int
WADI g_Unregi sterColorCrl (HAMND hDl g,

int ctrllD,
DWORD FAR *col or)

Unregisters adiaog item that was registered using WWDIg_Register Color Ctrl.
Any memory used is freed and the current color selection is returned.

Parameter Description
hDlg Identifies the dialog box.
ctrliD Specifies the identifier of the dialog box control that

uses the standard InTouch color choice dialog. The
control must be a Windows standard list box control
with LBS NOTIFY enabled.

color Points to a DWORD that returns the current color
selection.

Thereturn valueis the error status of the function. O indicates success. A non-zero
valueisan error status.

None.

Wizard API Function Reference 6-101

WWDIg _UnregisterKeyCitrl

Description

Return Value

Comments

int
WADI g_Unr egi sterKeyCtrl (HMND hDl g,
i nt enabl eKeyCtrl I D,

DWORD FAR * dwPr opKeyCode,
DWORD FAR * dwPropKeyFl ags)

Unregisters the set of dialog itemsto that were registered in
WWDIg_Register KeyCtrl. Frees any memory associated with the mapping of
diaog items.

Parameter Description
hDlg Identifies the dialog box.
enableKeyCtr|ID Specifies the identifier of the dialog box control that

enables or disables the key equivalent controls. Is
used in the key equivalent combination. Must be a
check box control.

dwPropKeyCode Key code for the selected Key (zero means no key
selected). Uses virtual key codes as defined in
windows.h.

dwPropKeyFlags Key flags values:
Value Meaning
TOUCH_KS_SHIFT Use shift key.
TOUCH_KS _CTRL Use ctrl key.
0 No flags.

Thereturn valueis the error status of the function. 0 indicates success. A non-zero
valueisan error status.

The selected key code and key flags are returned in dwPropKeyCode and
dwPropKeyFlags.

6-102

Chapter 6

WWDIg UnregisterTagNameCitrl

Description

Return Value

Comments

int
WADI g_Unr egi st er TagNaneCtrl (HVAD hDl g,
int ctrl1D)

Unregisters adialog item that was registered using
WWDIg_Register TagnameCtrl. Any memory is freed and the control takes onits
standard Windows capabilities.

Parameter Description
hDlg Identifies the dialog box.
ctrliD Specifies the identifier of the dialog box control that

uses the standard Tagname Selection Dialog.

Thereturn value is the error status of the function. O indicates success. A non-zero
vaueisan error status.

None.

WWKit_GetKeyStatus

Description

Return Value

Comments

BOCL
WAKi t _CGet Key St at us(VA D)

Retrieves the current status of the Wonderware hardware key.

Thereturn value is the status of the key. TRUE indicates that the key is attached to
the parallel port and is functioning normally. FALSE indicates either the key is not
attached or is not functioning.

This function could be used by third-party Wizard devel opers to implement a copy-
protection scheme for their product. For example, the developer of the wizard can
choose to only make a certain subset of their wizard's functionality available when
the key is not there (demo mode). See also the function
WWHKit_GetSerialNumber.

Wizard API Function Reference 6-103

WWHKit_GetLastError

Description

int
WAKi t _CGet Last Error(VA D)

Returns the error status of the most recent call to the Wizard Toolkit.

Parameter Description
Return Value The return value, if non-zero, indicates the error

status. 0 indicates the most recent call was

successful.

Value Meaning

1 unsupported
function

2 out of memory

3 wizard read error

10 object null

11 object bad type

20 property not found

21 property exists

22 bad property type

23 property type
mismatch

24 property name too
long

30 invalid access data

31 invalid access ID

32 invalid item name

33 problem with
tagname

34 problem with
tagname type

35 problem with
expression

36 problem with
expression type

37 problem with

application/topic

6-104 Chapter 6

Value Meaning

38 problem with Stmt
expression

40 problem with text
too long

41 problem with dllojb
not found

42 problem with trend
object - sample
parameter

43 problem with trend
object span units

44 problem with trend
object span units

45 problem with trend
object min/max
relationship

46 bad time parameter

47 bad mode parameter

50 link type invalid

51 alarm typeinvalid

52 error from Lnk_New

Comments WWHKit_GetLastError will clear the error condition.

WWHKit_GetSerialNumber

DWORD
WAKi t _CGet Seri al Nunber (VO D)

Description Retrieves the serial number of the Wonderware hardware key.
Return Value Thereturn value is the serial number of the key.
Comments This function could be used by third-party Wizard devel opers to implement a copy-

protection scheme for their product. For example, the developer of the wizard can
choose to only make their wizard function when certain numbered keys are attached.
See dso the function WWKit_GetK eyStatus.

Wizard API Function Reference 6-105

WWKit_Init

Description

Return Value

Comments

VO D
VWAKi t I nit(VO D)

Initializes the wizard tool kit if not previously done so. This call must be done once
per wizard DLL.

None.

None.

WWHKit_SetBrush

Description

Return Value

Comments

VO D
WAKi t _Set Brush(LPLOGBRUSH | pLogBr ush)

Sets the brush used when manipulating objects that have a brush associated with
them.

Parameter Description

IpLogBrush Points to aLOGBRUSH structure that defines the
characteristics of the logical brush used for objects
that require one. LOGBRUSH is a Windows
structure.

None.

Thelogica brush does not need to be modified until an object is created that
requires adifferent logical brush. Thelogical brush is used for InTouch objects that
allow fill color selection.

WWHKit_SetFont

Description

Return Value

Comments

VO D
WAKi t _Set Font (LPLOGFONT | pLogFont)

Sets the font used when manipulating objects that have a font associated with them.
Parameter Description

IpLogFont Pointsto a LOGFONT structure that defines the
characteristics of the logical font used for objects
that require one. LOGFONT is a Windows
structure.

None.

Thelogical font does not need to be modified until an object is created that requires
adifferent logical font. The logical font is used for InTouch objects that allow font
selection.

6-106 Chapter 6

WWHKit_SetPen

VO D
WAKi t _Set Pen(LPLOGPEN | pLogPen)

Description Sets the pen used when manipulating objects that have a pen associated with them.
Parameter Description
IpLogPen Points to a LOGPEN structure that defines the

characteristics of the logical pen used for objects
that require one. LOGPEN is a Windows structure.

Return Value None.

Comments Thelogical pen does not need to be modified until an object is created that requires
adifferent logical pen. Thelogical penis used for InTouch objects that allow line
color and width selection.

WWHKit_SetTextBrush

VO D
WAKi t _Set Text Brush(LPLOGBRUSH | pLogBr ush)

Description Sets the text brush used when manipulating objects that have a text brush associated
with them.
Parameter Description
IpLogBrush Points to aLOGBRUSH structure that defines the

characteristics of the logical brush used for objects
that require atext logical brush. LOGBRUSH isa
Windows structure.

Return Value None.

Comments Thetext logical brush does not need to be modified until an object is created that
requires adifferent text logical brush. The text logical brush is used for InTouch
objects that allow text background color selection.

WWHKit_SetTextPen

VO D
WAKi t _Set Text Pen(LPLOGPEN | pLogPen)

Description Sets the text pen used when manipulating objects that have a text pen associated
with them.
Parameter Description
IpLogPen Points to a LOGPEN structure that defines the

characteristics of the logical pen used for objects
that require atext logical pen. LOGPEN isa
Windows structure.

Return Value None.

Comments Thetext logical pen does not need to be modified until an object is created that
requires adifferent text logical pen. The text logical penis used for InTouch objects
that allow text color selection.

7-1

CHAPTER 7

Wizard API Structures

The Wizard Toolkit contains several structures associated with the Wizard API
functions. These structures are defined in a phabetic order in this chapter.

Contents
n Wizard APl Structures

7-2

Chapter 7

ACCESSNAMEINFO

Description

See Also

typedef struct {
LPSTR appl i cati on;
LPSTR t opi c;
WORD bRequest | niti al Dat a;
WORD bAl waysAdvi se;
} ACCESSNAMEI NFO, FAR* LP_ACCESSNAMEI NFO,

The ACCESSNAMEINFO structure contains information used to define Access
Names. Items in the structure are set and passed to AccessName_New and
AccessName_Setlnfo.

Element Description

application Points to a null-terminated string that specifies the
application name

topic Points to a null-terminated string that specifies the
topic name

bRequestnitialData If TRUE, set "Request initial data’, if FALSE,
"wait for change"

bAlwaysAdvise If TRUE, set "advise all points', if FALSE advise

only active points

AccessName_New, AccessName_SetInfo

ANLGTAGINFO

Description

Comments

See Also

typedef struct {
doubl e i nit Val ue;
} ANLGTAQ NFO, FAR* LP_ANLGTAG NFQ,

The ANLGTAGINFO structure contains information to set the initial value of an
analog database tagname. Items in the structure are set and passed to the
AnlgTag_SetInfo function. The AnlgTag_Getlnfo function returns the
information in this structure.

Element Description

initValue Specifiesthe initial value for the analog tagname

TheinitValue field in the structure is CAST appropriately to REAL or INTG,
depending on the type of the database tagname.

AnlgTag_Getlnfo, AnlgTag_SetInfo

Wizard API Structures 7-3

DEVALARMINFO

Description

See Also

typedef struct {
WORD
WORD
WORD
WORD
REAL
REAL
REAL

maj or Al ar nst at e;

m nor Al ar nSt at e;
maj orAlarnPriority;
m norAlarnPriority;
maj or Al ar mval ue;

m nor Al ar mval ue;

al ar nDeadband;

doubl e devTarget;
} DEVALARM NFO, FAR* LP_DEVALARM NFO

The DEVALARMINFO structure contains information to set the deviation alarm
fieldsin the database tagname. Items in the structure are set and passed to the
Tag_SetDeviationAlar m function.

Element

Description

majorAlarmState
minor AlarmState
majorAlarmPriority
minorAlarmPriority
majorAlarmValue
minorAlarmValue
alarmDeadband

devTarget

Tag_SetDeviationAlarm

Specifies the major deviation alarm state
Specifies the minor deviation alarm state
Specifies the major deviation alarm priority
Specifies the minor deviation alarm priority
Specifies the major deviation alarm value
Specifies the minor deviation darm value
Specifies the deviation alarm deadband
Specifies the deviation target (CAST for type)

7-4 Chapter 7

DISCALARMINFO

typedef struct {
WORD al ar nt at e;
WORD al arnPriority;
} DI SCALARM NFO, FAR* LP_DI SCALARM NFG,

Description The DISCALARMINFO structure contains information to set the discrete alarm
fieldsin the database tagname. Items in the structure are set and passed to the
Tag_SetDiscAlarm function.

Element Description

alarmState Specifies the alarm state
Value Meaning
ALARMSTATE_NONE No alarm state
ALARMSTATE_OFF Alarm is off
ALARMSTATE_ON Alarmison

alarmPriority Specifies the alarm priority

See Also Tag_SetDiscAlarm

DISCTAGINFO

typedef struct {
WORD i ni t Val ue;
LPSTR onMsg;
LPSTR of f Msg;

} DI SCTAA NFO, FAR* LP_DI SCTAG NFQ,

Description The DISCTAGINFO structure contains information to set initial value and the
On/Off message fields in a discrete database tagname. Itemsin the structure are set
and passed to the DiscTag_SetInfo function. The DiscTag_Getlnfo function
returns the information in this structure.

Element Description

initValue Specifiesthe initial value (on or off)

onMsg Points to a null-terminated string that specifies the
on value message

offMsg Points to a null-terminated string that specifies the
off value message

See Also DiscTag_Getlnfo, DiscTag_SetInfo

Wizard API Structures 7-5

ROCALARMINFO

Description

See Also

typedef struct {
WORD al ar nSt at e;
WORD al arnPriority;
WORD rocUnits;
REAL pct Change;

} ROCALARM NFO, FAR* LP_ROCALARM NFO,

The ROCALARMINFO structure contains information to set the rate of change
alarm fields in the database tagname. Itemsin the structure are set and passed to the
Tag_SetRateOfChangeAlarm function.

Element Description

alarmSate Specifies the alarm state
alarmPriority Specifies the alarm priority
rocUnits Specifies the rate of change units
pctChange Specifies the percent change value

Tag_SetRateOfChangeAlarm

STRTAGINFO

Description

See Also

typedef struct {
WORD nMaxStri ng;
LPSTR i ni t Val ue;
} STRTAG NFO, FAR* LP_STRTAG NFQ,

The STRTAGINFO structure contains information to set the initial value and
maximum string length for a message tagname. Items in the structure are set and
passed to the StrTag_SetInfo function.

Element Description

nMaxString Specifies the maximum string length

initValue Points to a null-terminated string that specifies the
initial value

StrTag_Setinfo

7-6 Chapter 7

TAGACCESSINFO

typedef struct {
DDESOURCE accessl D;
LPSTR it enNane;

} TAGACCESSI NFO, FAR* LP_TAGACCESSI NFO,

Description The TAGACCESSINFO structure contains information to set the retentive flagsin a
database tagname. The items in the structure are set and passed to the Tag_New and
Tag_SetAccessl nfo functions. The Tag_GetAccessl nfo function returns the value
in the TAGACCESSINFO structure.

Element Description

accessID Access ID, asreturned from AccessName _Find,
AccessName_FindApplTopic, or
AccessName_New

itemName Points to a null-terminated string that specifies the
[/O point item name

See Also Tag_GetAccessinfo, Tag_New, Tag_SetAccesslnfo

TAGEVENTINFO

typedef struct {
WORD bEnabl ed;
WORD priority;
} TAGEVENTI NFO, FAR* LP_TAGEVENTI NFG,

Description The TAGEVENTINFO structure contains information to set the event flagsin a
database tagname. The itemsin the structure are set and passed to the
Tag_SetEventlnfo function.

Element Description

bEnabled bEnabled is set to TRUE if event logging is enabled
for this tagname

priority Set to the event logging priority of this tagname
See Also Tag_SetEventIinfo

Wizard API Structures 7-7

TAGINFO

Description

See Also

typedef struct {

WORD t ype;
WORD accessType;
WORD used;
LPSTR nane;
LPSTR comment ;

} TAGQ NFO, FAR* LP_TAG NFQ

The TAGINFO structure contains information to set the basic information in a
database tagname. The items in the structure are set and passed to the Tag_SetInfo
function. The Tag_Getlnfo function returns the data viathe TAGINFO structure.

Element Description
type Specifies the type of tagname. See Tag_New for
valid tagname types.
accessType Access type, either memory, indirect or 1/0O
Value Meaning
ACCESS MEM Tag isamemory
tagname
ACCESS_DDE Tagisal/Otype
tagname
ACCESS IND Tag isanindirect
tagname
used Set to TRUE if used
name Points to a null-terminated string that specifies the
tagname
comment Points to a null-terminated string that specifies the

Tag_GetInfo, Tag_SetInfo

TAGRETENTIVEINFO

Description

See Also

typedef struct {

comment field

WORD bVal ue;
WORD bAl ar nPar ans;
} TAGRETENTI VEI NFO, FAR* LP_TAGRETENTI VEI NFG,

The TAGRETENTIVEINFO structure contains information to set the retentive flags
in a database tagname. The items in the structure are set and passed to the
Tag_SetRetentivel nfo function.

Element

Description

bValue

bAlarmParams

Set to TRUE if it's aretentive value
Set to TRUE if dlarm parameters are saved

Tag_GetRetentivel nfo, Tag_SetRetentivel nfo

7-8 Chapter 7

TAGSCALEINFO

typedef struct {
WORD i nput Conv;
doubl e m nVal ue;
doubl e maxVal ue;
doubl e m nRawval ue;
doubl e maxRawval ue;
doubl e deadband;

} TAGSCALEI NFO, FAR* LP_TAGSCALEI NFO,

Description The TAGSCALEINFO structure contains information to set the scaling information
in adatabase tab. Theitems in the structure are set and passed to the
Tag_SetScalingl nfo function.

Element Description

inputConv Specifies the input conversion

For Discrete Tags

DISC_CONVERT_REVERSE
DISC_CONVERT_DIRECT
For Analog Tags

ANLG_CONVERT_LINEAR
ANLG_CONVERT_SQRT

minValue Specifies the minimum value
max\Value Specifies the maximum value
minRawValue Specifies the minimum raw value
maxRawValue Specifies the maximum raw value
deadband Specifies the value deadband
Comments The minValue, maxValue, minRawValue, maxRawValue fields should be CAST

appropriately to REAL or INTG, depending on the type of the tagname.
See Also Tag_SetScalinglnfo

Wizard API Structures

VALALARMINFO

typedef struct {

WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
REAL
REAL
REAL
REAL
REAL

hi Hi Al ar nSt at e;

hi Al ar ntt at e;

| oAl ar ntt at e;

| oLOAIl ar nfst at €;

hi H AlarnPriority;
hi AlarnPriority;

| oAl arnPriority;

| oLoAl arnPriority;
hi Hi Al ar nval ue;

hi Al ar nval ue;

| oAl ar nVal ue;

| oLoAl ar nval ue;

al ar rbeadband,;

} VALALARM NFO, FAR* LP_VALALARM NFQ,

Description The VALALARMINFO structure contains information for value alarm fields within
a database tagname. Items in the structure are used to set fields in the database
pertaining to dlarms using the Tag_SetValueAlarm.

Element Description

hiHiAlarmState Specifies the HiHi alarm state
hiAlarmState Specifies the Hi alarm state
loAlarmState Specifiesthe Lo alarm state
loLoAlarmState Specifiesthe LoLo aarm state
hiHiAlarmPriority Specifies the HiHi alarm priority
HiAlarmPriority Specifiesthe Hi alarm priority
loAlarmPriority Specifiesthe LoLo aarm priority
loLoAlarmPriority Specifiesthe Lo alarm priority
hiHiAlarmValue Specifies the HiHi alarm value
hiAlarmValue Specifies the Hi aarm value
loAlarmValue Specifiesthe Lo aarm value
loLoAlarmValue Specifiesthe LoLo aarm value
alarmDeadband Specifies the deviation alarm deadband

See Also Tag_SetValueAlarm

7-10 Chapter 7

8-1

CHAPTER 8

Testing and Debugging Wizards

This chapter outlines the issues that should be considered when testing and
debugging wizards. Even though the complexity of wizards can range from simple
to extremely complex, there are several testing issues that need to be considered for
every wizard. This chapter describes various tests that the Wizard devel oper should
perform on all wizards and wizard DLLs once they are installed into
WindowMaker. Performing these tests will ensure that your Wizards have been
developed accurately and are completely functional.

This chapter aso describes how to debug your Wizards using CodeView for
Windows, Visual C++ Debugger, or by sending debug messages to the Wonderware
Logger program.

Contents

m Testing Guidelines for Wizards

m Sending Debug Messages to the Wonderware Logger
m Using CodeView to Debug the Wizard DLL

m Using Visua C++ to Debug

8-2 Chapter 8

Testing Guidelines for Wizards

We highly recommend that you perform the various tests described in this section to
ensure that the wizards you have developed function properly after they are installed
in WindowMaker.

Testing a Newly Installed Wizard

@l After you haveinstalled your new wizards in WindowMaker, perform the
following test to ensure that they installed properly:

1.

10.
11.

12.

Click the Wizard tool on the Wizard/ActiveX Toolbar in WindowMaker. The
Wizard Selection dialog box will appear.

Click on the name of the category for the new wizard(s). (The wizard should
appear in areato the right of the category listing.)

Click on the new wizard(s) to verify that its description is correct.

Select each wizard and then, click Add to toolbar to add each wizard to the
Wizard/Active X Toolbar.

Try adding wizards that are already in the toolbar. (If functioning properly, a
message box will appear informing you that the wizard is already in the
toolbar.)

Click Cancel to close the Wizard Selection dialog box and return to
WindowMaker.

Check the Wizard/ActiveX Toolbar to verify that the newly added wizard(s)
isthere.

Click on the new wizard(s). Does its bitmap appear pushed in?

Move your mouse over the wizard in the toolbar. Does its tool tip description
appear?
Undo and redo the creation of the wizard.

Remove combinations of wizards from the toolbar. In the Wizard Selection
dialog box, select each wizard and then, click Remove from toolbar.

Close the Wizar d Selection dialog box and return to WindowMaker to verify
that the wizards selected for removal are no longer in the toolbar.

Testing and Debugging Wizards 8-3

Testing Wizard Sizing

If the wizard was designed to be resized (most will be) the Wizard.DLL hasto
rebuild every object in the wizard based on the new size chosen by the user. To test
awizard's sizing, click on the wizard to select it then drag the selection handles to:

1
2.

3
4,
5
6

Size the wizard smaller in the horizontal direction.
Size the wizard larger in the horizontal direction.
Size the wizard smaller in the vertical direction.
Sizethe wizard larger in the vertical direction.
Size the wizard in a combination of these cases.

Size the wizard in arandom sequence. Y ou should be able to resize awizard to
an earlier size and have it achieve the same characteristics as the older size.
Also, re-sizing awizard should not cause the wizard to "enlarge” or "shrink"
unexpectedly.

Verify that the aspect ratio of the wizard is maintained when the wizard is
scaled.

When sizing the wizard, do text objects properly scale? Some text objects may
be fixed or not related to the size of the wizard, while other text objects may be
scaled as aratio of the wizard.

Undo and redo the wizard's size and make sure the wizard properly refreshes.
Pay special attention to any selection handles that should appear on the wizard.
Select and move the wizard to assure that the handles and wizard have been
properly refreshed.

8-4 Chapter 8

Testing Wizard Editing Capabilities

Editing is alowed on wizards that have implemented the function Wizar d_Edit.
Editing awizard simply changes its configuration properties. A "smart cell" rebuilds
the wizard automatically based on the wizard's new configuration. Internal contents
of awizard may change based on the configuration of the wizard. To test the editing
capabilities of awizard, perform the following steps:

1.

10.

Edit the wizard by double-clicking on the wizard to display the wizard's
configuration dialog box.

Use the TAB key to move from item-to-item in the dialog. Does the tabbing
sequence follow Microsoft User I nterface Guidelines?

Repeat step 2 using the arrow keys (especially within radio button groups).
Make sure the arrow keys wrap around within the radio button group.

When the dialog box initially appears, isthere an edit field or button that has
properly been given focus? If the focusison an edit field, is the entire contents
pre-selected?

Does the dialog box have a proper title for the wizard being edited? Isit
consistent? The style of the wizard dialog should be DS MODALFRAME
which will show up asa"fat" border. The wizard dialog should NOT have a
system menu.

The dialog must be modal. The wizard dialog must not allow you to get to
menus or windows of WindowMaker. Test this by trying to access
WindowMaker. However, you should be able to switch to another application.

Verify the operation of the Cancel or similar operation. This operation should
cause any modifications made in the dialog to have no effect.

Verify the operation of the OK or similar operation.

Undo and redo the wizard's editing and make sure the wizard properly
refreshes. Pay specia attention to any selection handles that should appear on
the wizard. Select and move the wizard to insure that the handles and wizard
have been properly refreshed.

Edit awizard, but click only OK. Make sure the wizard size does not change.
In general, clicking OK without making changes should not affect the wizard.
The wizard should only change if anew version of the wizard has been
installed. But once the wizard has changed based on the new version, it should
not change if you reenter the edit dialog box and click OK.

Testing and Debugging Wizards 8-5

Testing Wizard Configurations

For awizard that supplies a configuration dialog box, you must verify the wizard in
as many configuration combinations as possible. Test each of the following cases as
applicable to the wizard:

1
2.
3.

Verify limit checking on any numeric entry field.
Verify maximum data entry in any text entry field.

Verify tagname checking on any field allowing tagnames. If the tagname field
requires specific types, check to make sure only the proper types are allowed.
When you double-click in the field does the tagname sel ection dial og appear?

Verify expression checking on any field allowing expressions. If the expression
field requires specific types, check to make sure only the proper types are
allowed. When you double-click in the field, does the proper WindowM aker
dialog box for expression fields appear? The dialog box that appears may
change based on the position of the cursor in relation to the text in the field.
Enter real expressions.

Verify checking on numeric fields that are related to one another. For example,
aminimum vaue field should not have avalue larger than that of a maximum
valuefield.

Verify that the color configurations appropriately effect objects that appear
within the wizard. For example, alight might have an ON and OFF color. Make
sure that the light draws properly after changing its configuration to either of
the two colors. The light may actually work in WindowViewer, but in
WindowMaker it may not appropriately show the right colors.

Verify that the color selection dialog box is used when changing colors. The
color selection dialog box should be the WindowMaker standard dialog.

Test each configuration in WindowViewer. At the very least, verify that each
field or selection in the dialog works.

8-6 Chapter 8

Testing Toolbox Operations on a Wizard

A number of toolbar operations may be allowed for an individual wizard. These
operations are optional for awizard, but must not change based on modifications
made to the wizard. These operations include:

Font Operations

Bold, Italic, Underline
Left Justify, Centered, Right Justify
Reduce Font, Enlarge Font, Fonts. (Select Font)

Object Operations

Line Color, Fill Color, Text Color

» Do the following to test the toolbar operations for the wizard:

1.

Verify that the operations allowed for the wizard are properly enabled/disabled
when the wizard is first placed.

Verify that the operations allowed for the wizard are properly enabled/disabled
after the wizard has been resized.

Verify that the operations allowed for the wizard are properly enabled/disabled
after the wizard has been edited.

Perform each of the Font operations on awizard that has text objects upon
which the Font operations can be applied.

Undo and redo the Font operations making sure the object properly refreshes.

Verify when performing Font operations, that al of the appropriate text objects
change.

Check the "performance” of Font operations. In some cases the wizard may be
unnecessarily performing internal text measurements on each text object within
the wizard that cause the wizard to rebuild (refresh) slowly.

Perform each of the Object operations on awizard that supports Object
operations.

Undo and redo the Object operations making sure the object properly refreshes.

Testing and Debugging Wizards 8-7

Special Wizard Tests

The following special tests should be performed as applicable for the wizard:

1.

Verify the placeholders show for exported wizards that have tagnames,
expression, or script properties.

Verify that none of the wizards "auto grow.” Thiswill happen if the wizard
rectangle (passed to Wizard Obj _New) does not encompass all of the objects it
contains (plus one pixel on each side).

Verify that the text in the wizard placehol ders describes the correct type of
tagname/expression that can be used with each Wizard. For example,
?d:discrete.

Verify that no memory leaks are present. Using the GDI reading, in ResLog,
verify that the percentage of memory resourcesis not effected by repeated
executions of the Window Open command.

8-8 Chapter 8

Sending Debug Messages to the
Wonderware Logger

The Wonderware Logger program is very useful for debugging and logging error
condition messages, and so on. The Wizard developer can write debugging
messages to the Wonderware Logger by using the WWDBG.LIB debug library
supplied with the Wizard Toolkit.

To use the Wonderware Logger, the Wizard developer must add the debug.h file
(located in the /INC directory of the Wizard Toolkit) and the WWDBG.LIB file to
the project file.

To set the program name field in the Wonderware Logger window, the Wizard
developer must call the initiaization routing formatted as follows:

Debuglnit (LPSTR library_name)

Note If you pass an invalid application name to Debuglnit(), the request will be
ignored, and "UNKNOWN" will be placed into the program name field. No error
message will be written to the Wonderware Logger. Valid application names are
from 1 to 16 characters, and it is recommended that you do not usethe/ or %
characters.

The string in library_name s truncated at 8 characters (Iength of space availablein
the logger window). (We recommend using the Wizard DLL name.) Place
Debuglnit in the DLL Startup routine (DLLMain for Windows NT), so that it is
only executed once. We suggest placing it into the case for

DLL_PROCESS ATTACH.

i nt
W NAPI
D | Mai n(HANDLE hl nst ance, DWORD ul _reason_bei ng_cal | ed,
LPVO D | pReserved)
{
switch(ul _reason_being_called) {
case DLL_PROCESS ATTACH:
/1 Initialize needed globals
hDr awm nst = hl nst ance;
hDrawwnd = Fi ndW ndow("Wrmk C ass", NULL);
Debuglnit((LPSTR) "W Z1");
WAKit _Init();
br eak;
case DLL_THREAD ATTACH:
br eak;
case DLL_PROCESS DETACH:
br eak;
case DLL_THREAD DETACH:
br eak;
defaul t:
br eak;
}

return 1;

Testing and Debugging Wizards 8-9

To send a debug message to the logger, format the string as follows:
debug("format_string", variablelist ...);

where: format_string is aformat_string used by vsprintf.
For example:

debug("wizard index = %d", index);

debug("loaded bitmap %s", name);

Using CodeView to Debug the Wizard

DLL

CodeView for Windows can also be used to debug awizard DLL. When you use
CodeView, be sure to remember to debug WindowMaker (WM.EXE) and load the
DLL. Either load the DLL using the/I dil_name option on the cvw command line,
or load it from the Run menu pull down under L oad

There will be no symbols available for WindowMaker; however, there will be
symbols for the wizard DLL. Breakpoints, source, watch variables, and so on, will
be available just asif you were debugging an EXE. If there are no symbols for the
wizard DLL, then check the build options on the project and ensure it was built for
debug.

8-10 Chapter 8

Using Visual C++ to Debug

Visual C++ includes a built-in debugger that makes it very simple to go straight
from writing code to testing your wizards. Use the following steps to set up your
Visual C++ environment for debugging.

1.

Make sure you have built your Wizard DLL in 'Debug Mode'. To set this mode,
on the Options menu select Project and then, select Build Mode. Itisalso
important to set the switches. To do so, on the Options menu, select Proj ect
and then, select Compiler. A typical set of compiler switches to use for
debugging is:

/nologo /Gs /G2 /Zpl /W4 [Z7 IAMw /Od /D "_DEBUG" /D "_WINDOWS"
/D"_WINDLL" /FR /Gw

A typical set of linker switches to use for debuggingis:

/NOLOGO /LIB:"libw" /LIB:"mdllcew" /LIB:"oldnames' /NOD /NOE
/PACKC:61440 /SEG:256 /ALIGN:16 /ONERROR:NOEXE /CO /MAP:FULL

Since WindowMaker will be calling your Wizard DLL to use the wizard, you
have to set up a'Calling Program.' To do so, on the Options menu, select
Debug and enter the full path to WindowMaker (for example, C:\Program
Files\FactorySuite\INTOUCH\WM.EXE). Leave the Debugging M ode set to
Soft.

Set a breakpoint in your code (a place to stop during execution) by placing your
cursor on the desired line and selecting Breakpoints. Click Add to add the
breakpoint to your list. You can set multiple breakpoints this way by adding to
thelist.

To start debugging, select Go on the Debug menu. Visual C++ will start
WindowMaker normally. Y ou want to open awindow and use the Wizard
(place it on the screen as you would normally). WindowMaker will call your
Wizard DLL (and execute your wizard code). When the code execution getsto
your breakpoint, Visual C++ will take the focus and the stop at that point. You
can then step through the code using the options under the Debug menu (Step
Into, Step Over, and so on)

When you are done debugging, select Go on the Debugmenu and let the wizard
DLL process to completion. It will then give control back to WindowMaker. You
can then close WindowMaker normally.

9-1

CHAPTER 9

InTouch QuickScript Functions

Welcome to the InTouch QuickScript Functions Toolkit. By using the QuickScript
Functions Toolkit, a proficient C programmer can develop and embed custom
functions or subroutines which can be used either in InTouch QuickScripts or in
expressions displayed on InTouch windows.

Powerful scripts can be developed within InTouch utilizing arich set of conditional
statements, functions, and data operators. For example, suppose an OEM wanted to
provide an error message handling routine that maps an error code from a device to
an error message. A simple C routine can be written to do the mapping and the
InTouch application developer can call afunction such as "ErrorMessage
(errorNumber)" and retrieve an error message back. Furthermore, the script
extension developer can write an interface to the Window Help function that would
allow the InTouch user to bring up custom help screens by selecting the Help button
and then select which function they desire help on.

Since the output of the QuickScript Functions Toolkit is a Windows DLL, anything
that is callable through the standard Windows C interface is accessible through the
QuickScript Extension Toolkit. In order to maximize the benefits that the Toolkit
offers, it isimportant that you are capable of understanding and devel oping Window
DLLs.

The QuickScript Functions Toolkit consists of documentation, samples and the
necessary utilities to apply the InTouch QuickScripting feature.

Contents

m Getting Started with the QuickScript Toolkit

m Pasting Functions and Arguments

= Instaling Your Script Extensions

= Combining the QuickScript Functions with IDEA

9-2

Chapter 9

Getting
Toolkit

Started with the QuickScript

WindowMaker recognizes the existence of ascript DLL by reading fileswith a
\WDF extension. Thisis an encrypted file that specifies the calling sequence of the
function, help information, and paste link information.

Once theinput definition file is created it needs to be converted from an input file to
a.WDFfile viathe CRYPT utility program by using the following format:

CRYPT infile, out file/e.

For example:

CRYPT tedtfile.idf testfilewdf /e

Each function in the script DLL is specified on a separate line. These functions
are caled by WindowMaker and are integrated into WindowMaker in the same
manner as other script functions.

The function should follow this format:

User Function name, Help file name, Help file index, Ignore Return Value,
Script Flags, Paste Argument String, Paste Function, DLL Function name, DLL
export name, Function Type, Return Type, Argument Types, and so on.

A blank parameter must be separated by a space. For example: ", ," NOT",".

Theinput definition file also contains a version information line. It appears on a
separate line and must be of the format "Version=nnn". The version humber is
not case sensitive, however it is expected to be an integer number.

Blank lines are allowed anywhere in the file except for the last line.

Comment lines must begin with a semicolon *;".

The following lists the functions that are called by WindowMaker to access script
functionality:

InTouch QuickScript Functions 9-3

Parameter

Description

User Function name
Help file name
Help file index
Ignore Return Value

Script Flags

Paste Argument String

Paste Function

DLL Function name

DLL export name

Function Type
Return Type

Name of the function to the user.
Name of .HLP file.
Index in .HLPfile.

This function does not necessarily return aresult. It
only applies when the function is used in ascript. If
"Ignore Return Value" is set to 1, the result of the
function does not need to be stored in avariable. If
"Ignore Return Value" is set to 0, the result must be
stored in avariable.

Flags

For more information, see "Flags' later in this
chapter.

Name of function to supply 'Paste Function and
Arguments' string.

Name of DLL which supplies 'Paste Function and
Arguments function. If thisisblank, it will default
to the DLL that the functionisin.

Name of DLL function.

Name of export in DLL. Thisisthe function name
as defined in the C code.

Calling type for function: PASCAL or C.
Return parameter type, such as:

INT
LONG
FLOAT
DOUBLE
STRING
WORD
DWORD
VOID

Chapter 9

Parameter Description

Argument Types The following parameter types are used when a
constant or the value of atag is passed to the
function:

INT
LONG
FLOAT
DOUBLE
STRING
WORD
DWORD

The following types are pointer types. They are
used when the function intends to pass back a result
by changing one of the parameters. A tag must be
provided when the user uses the function and is
providing an entry for this argument:

LP_INT
LP_LONG
LP_FLOAT
LP_DOUBLE
LP_STRING
LP_WORD
LP_DWORD

No return is passed for the following parameter
type:

VOID
This can only be used with C calling conventions:

VARARG

InTouch QuickScript Functions 9-5

Flags

The flag parameter is a hexadecimal DWORD, packed with information about a
particular function. The lower word contains information about where and how a
function can be used. The upper word contains sorting information for the script
dialog procedures to categorize a function appropriately. The flags parameter is a
combined value of all appropriate flags and types.

Functionality Hex Value

Can be used in an expression or in QuickScripts 0x00000000
Use Only in QuickScripts 0x00000001
Display this function in Selection Box 0x00000008
This function is InTouch Standard 0x00000020
Type of Function Hex Value

System Function 0x80000000
Recipe Function 0x40000000
SQL Access Function 0x20000000
SPC 0x10000000
Math Function 0x08000000
String 0x04000000
Miscellaneous Function 0x02000000

Note If you do not specify a function type, the function will not be displayed in the
WindowMaker script editor dialog box.

Special Considerations

If your function causes the machine to be suspended for an extensive period of time,
your InTouch application will aso be suspended until the function has finished
executing.

Also, do not use Windows API callsthat contain model loops that dispatch
messages or yields to other applications. (For example, MessageBox, DialogBox,
DDEML calls, PeekMessage, DispatchMessage, and so on.) Doing so may result in
WindowViewer processing a message in the middle of the execution of your script
function.

9-6

Chapter 9

Pasting

Functions and Arguments

WindowMaker will automatically paste a "function help string” when the user
selects it from a selection box. The DLL writer must supply afunction or functions
that return the syntax of the function and argument representations. WindowM aker
will aso highlight sections of the argument list for the user. The paste function must
return character positions to mark the beginning and end of the section to highlight.

The function declaration would look like this:

*

DWORD ArgFunc(LPSTR funcName, LPSTR result);
Note that the result buffer can only hold 100 characters.

funcNanme is the name of the function that was chosen
result is the result buffer

* % kX kX T~

~

The function file should always return a complete, syntactically correct string. This
means a full and correct function name, beginning and ending parentheses if
necessary, any arguments needed, and don't forget the semicolon, ';'.

For example:

SetDdeAppTopic(AccessName Text, App_Text, Topic_Text);

These are some common keywords used in Paste Function Strings:
Window_Text would specify "window"
Tagname would be any tagname

Number would be any type of number.

Highlighting Replacement Values

The DWORD value returned by the Paste function consists of two values: the start
and end position of a highlighted selection. Typically the devel oper of the DLL
would highlight the first parameter of the function. The user is then set up to do the
required editing after the paste. These values are zero based and do not include the
end position.

For example:

ErrorM essage(errorNumber);
would return:

MAKELONG (14,25).

If the function does not require a parameter to be highlighted, return 0. If the values
are the same, nothing will be highlighted but the cursor would be moved to that
position.

InTouch QuickScript Functions 9-7

Installing Your Script Extensions

Simply install the script function by copying the DLL and .WDF files to your
InTouch directory. (The WDF file is the encrypted function definition file.)
Anything can be done in the DLL that's allowable. Be warned that when the
function is executed you have control of the processor and could tie up the system.

Sample Script

The following is a sample script function that returns an error message string for a
given error message number.

LPSTR
W NAPI
Error Message(int nErrorNunber)

int nLen;

nLen = LoadString(hlnst, nErrorNunber, (LPSTR) nessage,
131);

if (nLen <= 0){
return ((LPSTR) "No nessage Found");

} else {
return (LPSTR) nessage;

}

}

We will also supply afunction for pasting the function name and arguments into the
text of the WindowMaker script. This function is structured to accommodate pasting
of strings for severa functions.

DWORD
W NAPI
Past eBui | t | nFuncs(LPSTR funcNane, LPSTR result)

DWORD hilite=0;
int i;

I strcpy(result, funcNane);

if(Istrcnpi (funcName, "ErrorMessage") ==) {
Istrcat(result, " (errorNunber);");
hilite = MAKELONG(14, 27);

return(hilite);

}

WindowMaker will optionally call two routines, WWDIIInit and WWDIIFree, when
it triesto load the DLL and beforeit frees the DLL. These routines do not have to
be supplied but they can be useful if you need to have certain operations performed
on startup or shutdown.

9-8

Chapter 9

The function prototypes for the routines are as follows:

void WNAPI WA I Init (void);
void WNAPI WD | Free(void);

Our sample does not require any special initialization or shutdown treatment, so
we'll just stub them out for completeness.

void
W NAPI
WADI |1 ni t ()

/* do anything special that is required for the DLL */
return;

voi d
W NAPI
WADI | Free()

/* clean up anything that needs to be cl eaned up */
return;

}

Wewill also need aDLL entry routine (DLLMain for 32-bit Windows). In this case,
we need to save away our hinstance for use by LoadString.

i nt

W NAPI

D | Mai n(HANDLE hl nst ance, DWORD ul _reason_bei ng_cal | ed,
LPVO D | pReserved)

switch(ul _reason_being_called) {
case DLL_PROCESS ATTACH:
hl nst = hl nst ance; /] save it for |later
br eak;
case DLL_THREAD ATTACH:
br eak;
case DLL_PROCESS DETACH:
br eak;
case DLL_THREAD DETACH:
br eak;
defaul t:
br eak;
}

return 1;

}

Of course, no DLL is complete without a DEF file. Since we only have one script
functionin this DLL, the DEF is very simple.

LI BRARY ERRMBSG
DESCRI PTI ON ' Copyri ght Wonderware Software Corp, 2000

EXETYPE W NDOWS

EXPORTS
Error Message
WAD | | ni t
WADI | Free
Past eBui | t | nFuncs

RAIRR

InTouch QuickScript Functions 9-9

The RC file would contain the strings that would be returned for an individual error

number.

#i ncl ude "wi ndows. h"

STRI NGTABLE

BEG N

1, "Low Battery"

2, "Conmuni cation Failure"

3, "Device m smatch"

4, "Device |/O type m smatch"
5, "Configuration m smatch”

6, "System bus error"

7, "Failed battery"

8, "Stack is full or not there"
9 "PLC wat chdog tiner timed out”

END
The IDF file (un-encrypted input definition file) would contain aversion
information line and one function definition line.

; ERRMBG | DF

Ver sion=1

Err or Message, errnsg. hl p, G030, 1, 0x20000028, Past eBui | t | nFuncs,
ERRMSG, ERRMSG, Er r or Message, PASCAL, STRI NG, i nt

Combining the QuickScript
Functions with IDEA

A powerful combination isto use the IDEA Toolkit APl within the QuickScript
Functions Toolkit. Thisis useful when reading large amounts of datafrom an
external source, generic functionality, where the names of the tags are configured
from an external source.

9-10 Chapter 9

10-1

CHAPTER 10

IDEA Toolkit

Man-Machine Interface (MMI) applications perform some very specific
computations involving data that is gathered and displayed by other MMI programs.
InTouch has facilities to accomplish user-coded computations; however, the
requirements of the application may preclude the use of InTouch built-in logic
processing. Sometimes, a package of proven, proprietary algorithms must be
incorporated into the overall MMI solution. For these situations, devel opers can use
the InTouch Database External Access (IDEA) Toolkit.

For programmers using Visual Basic, an InTouch OCX is also included with the
InTouch Extensibility Toolkit which greatly simplifies and streamlines the
programming task. The OCX provides notification of data changes so that the
programmer no longer needs to know the issues of polling in control applications.

Contents

m Requirements

m Functiona Description

m Tag Handles and Memory Usage

m Accessing Remote Tags

m Program Examples

m IDEA Programsin the Windows NT Environment
m InTouch Noatification of Tag Changes

= Running IDEA Toolkit Samples

m Function Reference

10-2 Chapter 10

Requirements

Thistoolkit isintended for use by experienced software developers. Mastery of the
programming language and devel opment tools is a prerequisite to the toolkit's use.

IDEA users who wish to develop a Windows program may work in Microsoft
C/C++, Microsoft Visual C/C++, and Microsoft Visual Basic. Microsoft C users
must have a Windows Software Development Kit if they are not using Microsoft
Visual C++.

Note Users who wish to work in the 32-bit Windows environment must use the
Microsoft Visual C++ development environment.

Summary of IDEA Options & Requirements

Windows 95/98 Windows NT
Microsoft C/C++ Yes Yes
Microsoft Visua Basic Yes Yes
*Windows SDK Required Yes Yes
Type of Computer Pentium Pentium

* Only if Microsoft Visual C++ isnot used. Microsoft Visual C++ 6.0 Service
Pack 3 or later is highly recommended.

IDEA Toolkit 10-3

IDEA Toolkit Contents

Once the IDEA Toolkit has been installed, the following files and directories are

available:

\INTOUCH DIRECTORY

\IDEA\SAM PLES\CIDEAAPP

ITEDIT.OCX Windows C++ 32-bit source code
equivalent to Example #2 via Cldea.

\IDEA\LIB \IDEA\SAMPLES\WINSIMPL

PTACC.LIB Windows C 32-hit source code for

WWDBG.LIB Example #2.

WWHEAP.LIB

\IDEA\INC \IDEA\SAM PLES\WINCM PL X

PTACC.H Windows C 32-bit source code for

DEBUG.H Example #3.

WWHEAP.H

\IDEA\VB \IDEA\SAMPLES\ITAPP

PTACC.BAS Sample "DOCALC" InTouch
application.

\IDEA\EXE \IDEA\SAM PLES\VBSIMPLE\VB6

Contains pre-built release-mode IDEA
application samples.

Visual Basic 6.0 32-bit example source
for Window NT.

\IDEA\SAM PLES\VBSIM PLE\VBG6\
VB6ITAPP

InTouch 7.1 sample to interface with
Visual Basic 6.0 application.

10-4 Chapter 10

Functional Description

An IDEA program that accesses InTouch data has the following structure:

1. Establish aconnection (ACCID handle) with the InTouch runtime database by
calling PtAccl nit.

2. Prepare to access specific tagnames by calling PtAccActivate for each tagname
to be accessed or changed. This creates HPT handles.

3. Read the specific tagnames that are needed as input for the algorithms by
calling PtAccReadD, PtAccReadl, PtAccReadR, PtAccReadA or
PtAccReadM .

4. Call PtAccOK to ensurethat InTouch is still running and the tagnames that
wereread are till valid.

Perform computations as needed.

6. Write the results back to the InTouch tagname database by calling
PtAccWriteD, PtAccWritel, PtAccWriteR, PtAccWriteA or PtAccWriteM.

7. Repeat steps 3, 4, 5 and 6 as needed until time to shut down.
8. Shutdown by calling PtAccShutdown and exit.

Though the structure outlined in the previous steps is the simplest application of the
IDEA Toolkit, it is probably adequate for the majority of users' needs. Other
features are available to allow a more sophisticated program structure. Some of
these are:

e A Windows program written with Microsoft Visua C++ can register with
InTouch to be notified immediately when specific tagnames change values

o Refer to PtAccActivateAndNotify and PtAccActivateAndSendNotify

IDEA Toolkit 10-5

Special Data Types

Some special datatypes are used with the IDEA Toolkit functions. They are defined
in the files appropriate for each supported language.

ACCID Thisisan Access Id. It isused in most functions to identify a
connection to the InTouch database. A program must have at
least one Access Id to be able to access the database. The
program may have more than Access |d. Each variable accessed
is associated with an Access Id.

HPT ThisisaPoint Handle. When a program accesses avariable in
the InTouch database, it must first convert the variable name
(which isacharacter string containing the name of any valid
tagname or field) into a handle for efficient use. Each point to be
accessed must have a Point Handle. These handles are used
throughout the program to read and write variables.

PTYPE ThisisaPoint Type. PtAccType returns avalue of thistypeto
indicate the type of InTouch variable. NULL isuseto indicate an
invalid or unknown type of point. There are four valid codes for
PTYPE:

PT_DISCRETE
PT_INTEGER
PT_REAL
PT_STRING

#i ncl ude "ptacc. h”

ACCI D Accl d;

HPT SecondsHandl e;
PTYPE SecondsType;

| ong | nt Seconds;

fl oat Fl oat Seconds;
char MsgSeconds[132] ;

/* The first thing needed is an ACCID. This is provided by
the function PtAcclnit.*/

Accld = PtAcclnit(hwd, 8);

10-6 Chapter 10

/* To be able to access an I nTouch variable, one nmust supply
the variable's name so that it can be converted into a
shorthand reference. This is the HPT. PtAccActivate takes as
paranmeters an ACCID and a variabl e name and returns the HPT
(point handle.) Al other IDEA functions work with ACCI D and
HPT. */

SecondsHandl e = Pt AccActivate(Accld, "$Second");

SecondsType = Pt AccType(Accld, SecondsHandle);
swi tch(SecondsType) {
case PT_DI SCRETE:
/* $Second as a discrete? Doesn't nmake sense */
br eak;
case PT_I NTECER:
I nt Seconds = Pt AccReadl (Accld, SecondsHandle);
br eak;
case PT_REAL:
Real Seconds = Pt AccReadR(Accld, SecondsHandle);
br eak;
case PT_STRI NG
Pt AccReadM Accld, SecondsHandl e, MsgSeconds,
si zeof (MsgSeconds));
br eak;

Access ID Handles (ACCID)

Thefirst step isto create one or more ACCIDs through calls to PtAccl nit. This step
is necessary because it allows the IDEA functions to determine whether InTouch is
running on the computer and is accessible. It also makes it possible to run multiple
programs, simultaneously accessing InTouch data. Every other function and each of
the following steps depends on a unique ACCID.

If PtAcclnit returnsa NULL handle it meansthat InTouch is not accessible (not
running).

Only one ACCID isrequired for a program to use InTouch variables. However, it
may be useful to work with more than one ACCID. As described in the next section,
each Point Handle (HPT) you create is connected to an ACCID. This provides a
form of logical grouping of variables.

Point Handles (HPT)

The second step to access InTouch datais to set up Point Handles (HPTS) for all of
the InTouch variables that the program must read or write. In setting up Point
Handles, two important things are accomplished. 1) The InTouch variable or field
name is sent to InTouch to be vaidated, 2) If the nameisvalid, ahandleis
established. The handle makes every access to the variable speedy by eliminating
the need to look up the variable name and validate it each time. Successfully
creating an HPT indicates that the variable is valid. The point must be activated
before it can be read.

IDEA Toolkit 10-7

Activating Variables

The InTouch runtime database keeps track of which of its tagnames arein use. A
tagname is considered to be in use when:

e Itisusedinananimation link for an object in avisible window

e Itistrended

e Itisaarmed

e ItisusedinInTouch logic

e |tisusedinan action script for an object in a visible window

e |t has been the object of an Advise request from an 1/O client

e |t has been activated by a program developed with the IDEA Toolkit

Some InTouch variables originate with other programs in the system. For example,
some come from external egquipment through 1/0O Server programs. Other variables
may come from awide variety of Windows applications such as Microsoft Excel
spreadsheets. When this type of variable isin use, InTouch requests the originating
program to notify InTouch of every change in its value. When these variables are
not in use, InTouch cancels the request. An IDEA program must activate each
variable to ensure that when it reads a variable, it receives the current value. The
IDEA functions PtAccActivate and PtAccHandleActivate activate variables.

If there are periods during which the program does not need some or all of the
variables, it is good practice to notify InTouch that they are not in use by calling
PtAccHandleDeactivate or PtAccDeactivate. This allows InTouch to notify any
involved 1/O servers that these variables are not needed and polling can be
suspended. When these variables are, in fact, needed, they must be activated again
by calling PtAccHandleActivate.

Note PtAccActivate should not be used to reactivate a point because it creates a
new HPT aswell as activating it.

InTouch Variable Types

The InTouch tagname database contains data of four basic types: discrete, integer,
real (or floating point) and character strings. A discrete tagname has only two
possible values, O (off or false) or 1 (on or true.)) An integer tagnameis a 32-bit
signed number ranging between -2,147,483,648 and +2,147,483,647. Real (floating
point) tagnames are 32-bit |EEE floating point numbers ranging between -3.4e+38
and +3.4e+38. Character string tagnames are null-terminated (C language standard)
ASCII arrays up to 131 8-bit charactersin length.

The function PtAccType alows the user to determine the type of atagname.
Knowing the type, the user can call the appropriate functions to read and write the
tagname. Another pair of function calls, PtAccReadA and PtAccWriteA, can be
used with discrete, integer or real tagnames. The value of the tagname is converted
to double-precision floating point by PtAccReadA and converted from double-
precision floating point to the appropriate type by PtAccWriteA.

Of course, the IDEA program can know ahead of time the type of each variable it
uses. If so, the appropriate read and write functions can be called without checking
PtAccType. If thisisthe case, it is good practice to verify the type of each variable
when the HPT is created.

Chapter 10

Reading InTouch Variables

After creating an ACCID, creating an HPT for each variable and activating each
HPT, values can be read from InTouch. IDEA has five functions for reading

InTouch data:
Function

Description

PtAccReadD

PtAccRead|

PtAccReadR

PtAccReadA

PtAccReadM

Reads an InTouch discrete, integer or real variable
and returns it as a discrete value.

Reads an InTouch discrete, integer or real variable
and returns it as an integer value.

Reads an InTouch discrete, integer or real variable
and returns it as a 32-bit |EEE floating point value.

Reads an InTouch discrete, integer or real variable
and returns it as a 64-bit |IEEE floating point value.

Reads an InTouch string variable.

Writing InTouch Variables

After creating an ACCID and an HPT for each variable, values can be written to
InTouch. IDEA has five functions for writing InTouch data:

Function Description

PtAccWriteD Writes a discrete value to InTouch discrete, integer
or real variable.

PtAccWritel Writes an integer value to an InTouch discrete,
integer or real variable.

PtAccWriteR Writes a 32-bit IEEE floating point value to an
InTouch discrete, integer or real variable.

PtAccWriteA Writes a 64-bit IEEE floating point value an
InTouch discrete, integer or real variable.

PtAccWriteM Writes an InTouch string variable.

Detecting InTouch EXxits

In most cases, the program must detect when InTouch exits. The function of the
IDEA program may be invalid when InTouch is not running. This can be
accomplished by calling PtAccOK. The recommended use if PtAccOK isto call it
once after each group of variablesis read before calculating and writing the results
back to InTouch. This technique is shown in the sample programs.

IDEA Toolkit 10-9

Storing Program Data with Each HPT

IDEA programs can store and retrieve a virtually unlimited amount of extra
information associated with each InTouch variable being accessed. For every
variable being accessed, IDEA will allocate storage in the amount requested by the
program. The user specifies the amount of storage needed in the call to PtAcclnit.
The functions PtAccSetExtral nt, PtAccSetExtral ong, PtAccGetExtral nt and

PtAccGetExtral ong alow the program to store and retrieve information from that
storage space.

Conceptualy, IDEA maintains information about the ACCIDs and HPTs as follows:

ACCID #1

IDEA internal infarm ation
nExpg Byer= 0

HFT#1 internal information

HFT#2 internal information

HFT#3 internal information

HFT#4 internal information ACCID #2

IDEA internal infarm ation
hExtraBykes= g

HFT#n internal information

HF T #1 internal information

HF T #2 internal information
HF T #3 internal information
HF T #4 internal information

HF T #k internal information

2 extra bytes for each HPT

In this case, when the user created the second ACCID, IDEA was specified to
alocate 8 extra bytes for each HPT. The user can store and retrieve information in
the 8 bytes allocated. It is up to the user to decide how to use the storage area.

Example #3 in the "Program Examples" section of this manual shows how this
feature can be used.

10-10

Chapter 10

Differences Between 16 and 32-Bit

Compilers

When using 16-bit compilers, the size of an integer istwo bytesand along is four
bytes. When using a 32-bit compiler, the size of each datatype is doubled. Hence,
an integer isfour bytes and along is eight bytes. Thisis especialy important when
you are porting an IDEA application to 32-bit Windows 95/98 or 32-bit Windows
NT. The following table shows the bytes required for each function under different
compilers. Example #5 further clarifies the differences between compilers.

Note Version 7.1 (or later) of the IDEA Toolkit only supports 32-bit Windows

development.
Bytes Needed
Function 16-bit Windows 32-bit Windows
PtAccSetExtral nt 2 4
PtAccReadExtralnt
PtAccSetExtralLong 4 8
PtAccReadExtralong

IDEA Toolkit 10-11

Tag Handles and Memory Usage

This section describes how to best use tag handles so that their implementation does
not cause an unnecessary strain on system resources. Certain implementations of
using the IDEA Toolkit to keep the handles to alarge number of tags active can
cause WindowViewer to slow down, and to even lock up. Y ou may see "RDB
Command Not Processed" errors, Assertion errors, and even Access Violation
errors, which can cause WindowViewer to terminate.

Note "RDB Command Not Processed" errors, Assertion errors, and Access
Violation errors are often caused by other problems, such as a corrupted InTouch
application. An IDEA application may not always be at fault.

A typical IDEA application has a program flow that resembles the following:

/1 dobal variable declarations

ACCI D g_acci d= NULL;

HPT g_hpt [SonmeNunber];

/1 Some function that is used for application initialization.
void InitializationRoutine()

{

U NT ui= 0;

wwHeap_Regi st er (NULL, &ui);

g_acci d= Pt Acclnit(NULL, 0);
for(int i=0; i< SomeNunber; i++)

{

g_hpt[i]= PtAccActivate(g_accid, "SoneTaghanes");
}

/1 Some other app initialization here.

/1 Some function that is used for processing data from View
voi d Dat aProcessi ngRout i ne()

for(int i=0; i< SomeNunber; i++)

{
Pt AccWitel (g_accid, g _hpt[i], SoneVal ue);
}

/1 Some function that is used to clean up tag handl es and
I nTouch connecti on.
voi d Shut downRout i ne()

for(int i=0; i< SomeNunber; i++)

{
Pt AccDeactivate(g_accid, g_hpt[i]);
Pt AccDel ete(g_accid, g_hpt[i]);

}

Pt AccShut down(g_acci d);
WwHeap_Unregi ster();

}

In some instances, PtAccHandleCreate, PtAccHandleActivate,
PtAccHandleDeactivate, and PtAccHandleDelete may also be used, but the effect is
the same.

This method of implementation is fine for asmall amount of tags. However, it will
not work for alarge amount of tags due to memory allocation and access within the
WWHeap.dll. Each time ahandle for atag is created (that is, calling
PtAccActivate, PtAccHandleCreate, and so on), a chunk of memory is allocated
in WWHeap for that handle. The more handles that are created, the more memory is
allocated and the more messages that need to be processed by WWHeap.

10-12

Chapter 10

At some point, athreshold will be reached where there are not enough system
resources to process the messages and the application will hang or eventually crash.
This threshold is difficult to define. It depends on a number of variables, including
the CPU speed, available memory, number of tag handles requested, and InTouch
application resources that are required (that is, the more scripts, animation, and
open windows it has, the more resources it will need).

For example, you have an InTouch application with 11,000 Discrete tags that are
being monitored for alarms and it uses a distributed alarm system. If all of the tags
are being updated at the same time (such asin the For Next loop in the sample
script), a problem may result. On the other hand, if an InTouch application islarge
(that is, there are hundreds of windows and scripts), then the problem may occur
with as few as 1,000 tags being updated at once.

The problem is not the result from updating the tags. Instead, it usually occurs when
there is an update to a number of tags and many tags are currently activated within
the IDEA toolkit application. This is because only one process at atime can use
WWHeap. Though many applications can connect to WWHeap and use it,
WWHeap will only perform management functions for one process at atime. One
or more of the following may add to the load encountered by WWHeap, and may
render it useless until it has finished processing its message queue: many handles
that are allocated for large or busy InTouch applications, lots of tag handle updates,
or other InTouch processes, such as running scripts, opening windows, and using
history or alarms.

The best way to avoid this situation is to keep the handles active only for tags that
are processed frequently during the execution of the IDEA application. If atag is
only going to be used occasiondly, create the handle and then delete it after
processing for that tag is complete, as shown in the following script:

/1 dobal variable declarations

ACCI D g_acci d= NULL;

HPT g_hpt = NULL;

/1 Some function that is used for application initialization.
void InitializationRoutine()

{

U NT ui = 0;

wwHeap_Regi st er (NULL, &ui);

g_acci d= Pt Acclnit (NULL, 0);

/1 Some other app initialization here.

/1 Some function that is used for processing data from Vi ew.
voi d Dat aProcessi ngRout i ne()

{
for(int i= 0; i< SomeNunber; i++)

g_hpt = Pt AccActivate(g_accid, "SonmeTagnanes");
Pt AccWitel (g_accid, g_hpt, SoneVal ue);

Pt AccDeacti vate(g_accid, g_hpt);

Pt AccDel et e(g_accid, g_hpt);

}

/1 Some function that is used to clean up tag handl es and
I nTouch connecti on.
voi d Shut downRout i ne()

{

Pt AccShut down(g_acci d);
WiHeap_Unr egi ster();

}

IDEA Toolkit 10-13

Accessing Remote Tags

When attempting to read a tag handle (obtained through a remote tag), sufficient
time must be allowed in order for a current value to be obtained before the tag
handle is deactivated and/or deleted. For example, it is common practice to create a
handle, activate it, read it's value, deactivate it, then deleteit all within the same
API:

voi d ProcessTags()

{
HPT hpt= Pt AccActivate(accid, "AccessNane:ltent);

SaveVal ue(Pt AccReadl (accid, hpt));
Pt AccDeacti vate(accid, hpt);

Pt AccDel ete(accid, hpt);

}

If thistype of script is executed for aremote tag, it is possible that the current value
will not be retrieved, since the current value may not have been obtained from the
1/O Server before the handle was del eted.

In order to ensure enough time to retrieve the value, you could insert adelay
between the time that the tag handle is read, and the time it is deactivated/del eted.
You could also create the tag handle and then let it remain active during the entire
life of the application. However, thisis not recommended since it has the potential
to slow down WindowViewer.

10-14 Chapter 10

Program Examples

Thefollowing set of examplesis provided to illustrate how the IDEA Toolkit can be
used. The following samples are written in no particular language. Their purpose is
toillustrate the ideas behind the functions and various ways to use the functions.

In addition, some of the examples provided are complete and working. Sample #2 is
provided for al supported environments: Windows C/C++ and Visual Basic.
Sample #3 is provided for the Windows C/C++ environment. To demonstrate the
working sample programs, we have a so included a simple InTouch application.

Example #1

Inthistrivial example, we show an access to the InTouch database which just reads
and displays the value of the message variable $TimeString.

acclD = PtAcclnit(0, 0);
if acclD =0 then
{ I'nTouch is not running }
print "InTouch is not running"
el se
{ I'nTouch is active ... try to activate $TineString }
hPt Time = Pt AccActivate(acclD, "$TineString");
if hPtTime <> 0 then
{ I'nTouch recogni zes $TinmeString ... read the current
val ue }
Pt AccReadM accl D, hPtTime, tineString);

{ Display the current val ue }
print "Current time in InTouch is " timeString;
endi f

{ Shut down the connection to InTouch }
Pt AccDeacti vate(acclD, hPtTinme);
Pt AccShut down(accl D);

endi f

IDEA Toolkit 10-15

Example #2

In this example, we show realistic sample that reads three points and performs a
calculation based on those points whenever InTouch signals the need to do the
calculation. After calculating the result, it is returned to InTouch. When InTouch
wants to do the calculation, it sets the variable DoCalc to TRUE and expects
DoCalc to be set FAL SE when the operation is complete. While this example uses a
Boolean variable, DoCalc, to determine when to do the calculation, it could just as
well have performed the cal culation every n seconds, or when an analog value
exceeded some limit, or as often as possible.

{ Initialization }
acclD = PtAcclnit(hwd (NULL), 0);

if acclD =0 then
print "InTouch not active"

st op;
endi f
hPt I nputl = Pt AccActivate(acclD, "Inputl"); { real }
hPt I nput 2 = Pt AccActivate(acclD, "Input2"); { real }
hPt I nput 3 = Pt AccActivate(acclD, "Input3"); { real }
hPt Result = Pt AccActivate(acclD, "Result"); { real }
hPt DoCal ¢ = Pt AccActivate(acclD, "DoCalc"); { discrete }
{ check that each of the hPtlnputl ... hPtDoCalc are non- NULL

If PtAccOK() returns FALSE, |InTouch has been stopped and we
nmust shut down}
while(PtAccOK(acclD)) do
if PtAccReadD(acclD, hPtDoCalc) = TRUE then
{ I'nTouch wants us to do the cal cul ation }
inputl = Pt AccReadA(hPtlnputl);
i nput 2 Pt AccReadA(hPtlnput2);
i nput 3 Pt AccReadA(hPtlnput3);
if PtAccOK(acclD) then
{ I'nTouch still running OK do the calculation }
result = inputl * input2 * input3;
{ store the result to InTouch }
Pt AccWiteA(acclD, hPtResult, result);

{ tell InTouch that we're done}
Pt AccWiteD(acclD, hPtDoCalc, FALSE);
endi f
endi f
endwhi | e

{ shut down the connection to InTouch }
Pt AccShut down(accl D)

10-16

Chapter 10

Example #3

Thisis a Windows example that only updates the screen when values change. It
illustrates callsto PtAccHandleCreate, PtAccHandleActivateAndNotify,
PtAccType, PtAccSetExtral nt, PtAccGetExtralnt, and
PtAccACCIDFromHPT. Redlize that thisis not atrivial example, but for
Windows development, it isimportant to understand the concepts applied in this
example.

In this example, we assume that the user enters the names of two tagnames that he
wishes to display. We will assume that these tagnames are in an array of structures
called taginfo[], see the following Declarations code. As an additional feature, if
the user minimizes the program window, we will tell WindowViewer to desctivate
the points, and will reactivate the points when the window is on the screen again.

It's worth reviewing the code that uses PtAccSetExtral nt and PtAccGetExtralnt.
At initialization time, when we call PtAcclnit, wetell it to alocate 2 extra bytes of
information for each HPT. Aswe create handles using PtAccHandleCr eate, we
save the index into our array of taglnfo in the extra bytes allocated with HPT, using
PtAccSetExtral nt. When IDEA notifies us of a change using the doChgMsg
message, it passes the HPT in the |Param of the message. First, we obtain the
corresponding ACCID by acall to PtAccACCIDFromHPT and then obtain the
array index by calling PtAccGetExtral nt. The result of thisisthat we ask IDEA to
save our index for us so that we don't have to search for HPT in our data structures.
In this example, with only 2 points, it would not have been a problem, but in alarge
system, it's easy to see the time savings.

{ Declarations }

struct {

char ti_tagnane[100];

HPT ti_hPt;

PTYPE ti_ptType;

char ti_val ueString[132];
} TAG NFO

TAG NFO taglnfo[2];
ACCI D accl D,

{ Initialization }

acclD = PtAcclnit(hwdParent, 2);
{Request 2 extra bytes per hPt}
if acclD =0 then
print "InTouch not active"
st op;
endi f

{ Register the "DBCHGVSG' defined in ptacc.h with Wndows }
dbChgMsg = Regi st er W ndowessage(DBCHGVSG) ;

{ Get the tagnanes for the 2 taglnfo structures; Use WN.IN

for sinmplicity in this exanple}

GetProfileString("Sanple", "Tagl", taglnfo[O].ti_tagnane,
"$Ti meString");

GetProfileString("Sanple", "Tag2", taglnfo[1l].ti_tagnane,
"$Second");

IDEA Toolkit 10-17

{ Create handles for the 2 tagnanes }
for i=0 to 1 do
taglnfo[i].ti_hPt = Pt AccHandl eCreate(accl D,
taglnfo[i].ti_tagnane);
if taglnfo[i].ti_hPt = 0 then
Error Msg("Cannot find tagnane", taglnfo[i].ti_tagname

);
stop
el se
{ renenber the point type }
taglnfo[i].ti_ptType = PtAccType(acclD,
taglnfo[i].ti_hPt);
{Activate the point [assumes initial w ndow is not
iconic] }
Pt AccHandl eActi vat eAndNoti fy(accl D, taglnfo[i].ti_hPt
);
{ Renenber the index in the "extra" bytes for the
poi nt }
Pt AccSet Extralnt(acclD, taglnfo[i].ti_hPt, 0, i);
{ Get the initial value }
Updat ePoi nt Val ue(i); { code shown later }
endi f
endf or

{ Support Routines }

Updat ePoi nt Val ue(n):
{ This code is called at initialization time to get an
initial value and is also called each time we're
notified that the point value has changed }

switch(taglnfo[n].ti_ptType) {
case PT_DI SCRETE:
{ Put result of PtAccReadD() into the string
taglnfo[n].ti_valueString }
sprintf(taglnfo[n].ti_valueString, "%",
Pt AccReadD(acclD, taglnfo[n].ti_hPt));
br eak;
case PT_I NTECER:
{ Put result of PtAccReadl() into the string
taglnfo[n].ti_valueString }
sprintf(taglnfo[n].ti_valueString, "%d",
Pt AccReadl (acclD, taglinfo[n].ti_hPt));
br eak;
case PT_REAL:
{ Put result of PtAccReadR() into the string
taglnfo[n].ti_valueString }
sprintf(taglnfo[n].ti_valueString, "%",
Pt AccReadR(acclD, taglnfo[n].ti_hPt));
br eak;
case PT_STRI NG
{ Put result of PtAccReadM) into the string
taglnfo[n].ti_valueString }
Pt AccReadM accl D, taglnfo[n].ti_hPt,
taglnfo[n].ti_valueString, 132);
br eak;
endsw t ch

Repai nt Screen(); { code shown |ater }

Repai nt Scr een() :
for i=0 to 1 do

ShowText (line #i, taglnfo[i].ti_valueString);
endf or

10-18

Chapter 10

{ W ndows Message Processing }

VWM _PAI NT nessage:
Repai nt Scr een() ;

dbChgMsg nessage:
{ I'Param of the dbChgMsg contains the hPt that was changed

hPt = | Param

{ Ask IDEA for the acclD that corresponds to this hPt }
accl D = Pt AccACCI DFr omHPT(hPt) ;

{ Now that we have the acclD and hPt, we need to know the
index into our array of points. W could search our
taglnfo[] array. However, when we initialized, we
asked I DEA to renenber the index in each hPt by
calling PtAccSetExtralnt(). Now, by calling
Pt AccGet Extralnt() we can retrieve the index without
any | ookup}

n = Pt AccGet Extralnt(acclD, hPt, 0);

{ Update the value and the screen }
Updat ePoi nt Val ue(n);

WM S| ZE nessage:
if wParamis S| ZENORMAL or S| ZEFULLSCREEN and the w ndows is
I CONI C t hen
{ User is looking at screen again ... activate all the
poi nt s}
for i=0 to 1 do
Pt AccHandl eActi vat eAndNoti fy(accl D, taglnfo[i].ti_hPt

’ endf or
endi f

if wParamis SIZEICONIC then
{ User is not |ooking at our points ... deactivate all
the points }
for i=0 to 1 do
Pt AccHandl eDeactivate(acclD, taglnfo[i].ti_hPt);
endf or
endi f

IDEA Toolkit 10-19

Example #4

For C++ programmersthereis a class titled Cldea that encapsul ates programming in
the IDEA Toolkit. It is the core of implementation for the ITEdit.OCX. An example
application highlighting its correct usage is found in the CIDEAAPP sample. This
sample application is the equivalent of WINSIMPL functionally, but isimplemented
viathe Cldea C++ class.

Example #5

Example #5 shows atest sample using one integer and one long under 32-bit.

/1 test sanple using one int and one | ong under 32-bit
/1 initialize (need 4 bytes for the int and 8 for
/1 the | ong)
Accl D = PtAcclnit(hwd, 4+8); // sizeof(int) +
si zeof (1 ong)
/1 register a tag
hPt = Pt AccActivate(AcclD, "TestTag");
/1l wite 15 to the extra int (first data offset 0)
Pt AccSet Extralnt(AcclD, hPt, 0, Oxf);
/1l wite 15 to the extra long (make roomfor the int)
Pt AccSet ExtraLong(AcclD, hPt, 4, Oxf);

10-20 Chapter 10

IDEA Programs in the Windows NT
Environment

Writing IDEA programs for 32-bit Windows is the same as writing IDEA programs
for 16-bit Windows with the following exception: IDEA (PTACC.DLL) usesthe
Wonderware heap management facility (WwHEAP). If you are writing a standalone
application that uses the IDEA interface, before calling PtAccl nit, you must
register your application with the Wonderware heap manager using the
wwHeap_Register function. You must aso unregister your program before it exits
using thewwHeap_Unregister function. The function prototypes are:

/1 call at the beginning of the C or C++ program

/1 before any other calls are made to PtAcc

#i f def _DEBUG

wwHeap_Regi st er Ex(hwid, pwivsgNotify, FILE , _LINE);
#el se

wwHeap_Regi st er (hwad, pwivsgNoti fy);

#endi f

/1 Al'l your other InTouch and Pt Acc code goes here...

/1 Call at the end of the C or C++ program

#i f def _DEBUG

wwHeap_Unregi ster Ex(_FILE_, _LINE);
#el se

wwHeap_Unr egi ster();

#endi f

Function prototypes:

BOOL W NAPI wwHeap_Regi ster(HWND hwWhd, Ul NT *wivsgNoti fy);

BOOL W NAPI wwHeap_Unregister();

BOOL W NAPI wwHeap_Regi st er Ex(HVWAD hWhd, Ul NT *wivsgNoti fy,
LPCTSTR szFile, int ilLine);

BOOL W NAPI wwHeap_Unr egi st er EX(LPCTSTR szFile, int ilLine);

The function prototypes are defined in #include wwheap.h. All 32-bit IDEA
Samples usethewwHeap Register and wwHeap_Unregister functions.

Note If you are using IDEA in an InTouch Script or Wizard DLL, it is hot
necessary to use thewwHeap_Register and wwHeap_Unregister functions.

Note Under 32-bit Windows, DLLs cannot reside in multiple places on the hard
disk. You must provide a search path to the InTouch directory so your IDEA
application can locateit. If aduplicate PTACC.DLL or WWHEAP.DLL resideson
your system, 32-bit Windows will attempt to create another instance of this DLL
and your IDEA application will generate Assertion Errorsin WWHEAP.

IDEA Toolkit 10-21

InTouch Notification of Tag Changes

The following example scenario shows the difference between the
PtAccActivateAndNotify, PtAccHandleActivateAndNotify and
PtAccActivateAndSendNotify PtAccHandleActivateAndSndNotify functions
and how they affect InTouch performance.

PtAccActivateAndNotify and
PtAccHandleActivateAndNotify

These functions cause InTouch to send notification via PostMessage. InTouch will
continue to post messages into your IDEA application's window message queue
until it exitsit's message loop (releases the system processor). Y ou may receive
multiple notifications before gaining control of the processor to handle them.

Example:

InTouch user clicks a button assigned directly to a discrete tagname:
InTouch enters message |oop
Tag goes High (1) and then Low (0)
InTouch posts notifications of both changes to IDEA Application
InTouch exits message loop
IDEA App enters message loop
IDEA App processes first notification and reads value, it will get O
IDEA App exits message loop
IDEA App enters message loop
IDEA App processes second notification and reads value, it will get O
IDEA App exits message loop

This occurs because InTouch has updated the tagname before the IDEA application
can read the value. If the values contained in the tags remain static until the IDEA
app processes them, then thisis agood function to use. If your IDEA application
requires real-time update of data, use the function PtAccActivateAndSendNotify
or PtAccHandleActivateAndSndNoatify.

10-22 Chapter 10

PtAccActivateAndSendNotify and
PtAccHandleActivateAndSndNotify

These functions cause InTouch to send notification via the Windows AP
SendMessage function. InTouch will post a message at the beginning of your IDEA
application's window message queue and then wait the IDEA application processes
the message. Once this happens, your application will have full control of the
processor until you exit your message loop. The example scenario describesthisin
further detail.

Example:
InTouch user clicks a button assigned directly to a discrete tagname.
InTouch enters message |oop
Tag goes High (1)
InTouch posts notification of changeto IDEA App
InTouch goesto sleep
IDEA App enters message loop
IDEA App processes notification and reads value, it will get 1
IDEA App exits message loop
InTouch wakes up
Tag goes Low (0)
InTouch posts notification of changeto IDEA App
InTouch goesto sleep
IDEA App enters message loop
IDEA App processes notification and reads value, it will get O
IDEA App exits message loop
InTouch wakes up
InTouch exits message loop

InTouch gives the IDEA application control after notification, then you are ensured
that the value read from the tagname is the value you received.

Anything requiring along time-slice (large table look-ups, database request waits,
file 1/0, and so on), should not be done during this cycle. Thiswill cause erratic
performance of InTouch (waiting for your application to exit its message loop). If
you must perform these types of functions, post a USER message or registered
windows message into your IDEA application's message queue (PostM essage) as a
response to the InTouch notification and perform this operation when your
application's private message has been received.

IDEA Toolkit 10-23

Note The use of these functions with tags that change frequently could cause your
application's buffer to overflow. If this occurs, a message will be posted in the
Wonderware Logger each time the event occurs. It is possible to increase your
application's buffer to 120 using the following code segment placed in your
WinMain function:

int MsgQuesize = 120;

whil e(MsgQueSi ze && ! Set MessageQueue(MsgQueSi ze))
MsgQueSi ze -= 8§;
I1f(!'MsgQueSi ze) return(FALSE);

If the overflow error still occurs, set an alarm state and using the <MYTAG>.Alarm
field.

Use of Environment Variables

Compilers and most software development tools are able to use environment
variablesto find the files that are needed. When installing the toolkit, keep the
following in mind:

PATH This environment variable is used by Windows NT to locate
executable files (programs) when the file is not found in the
current working directory. The PATH variable contains a
sequence of directories to search. Y our PATH should contain
both the Windows NT directory and the InTouch directory
(usually CA\INTOUCH.) Throughout this section, executable
fileswill be copied to the CAINTOUCH directory. If you wish
to use a different directory, you must be certain that the
directory isin your PATH.

INCLUDE This environment variable is used by most compilers and
assemblers to locate files accessed through INCLUDE
directives. Throughout this section, INCLUDE fileswill be
copied to C:\INCLUDE. If you wish to use a different
directory, be sureit is named in the INCLUDE environment
variable.

For example, in AUTOEXEC.BAT:
SET INCLUDE=C:\INCLUDE

LIB The object code linker uses the LIB environment variable to
locate object code libraries that are not found in the current
working directory on the default disk drive. Throughout this
section, library fileswill be copied to C:\LIB. If you wish to
use adifferent directory, be sureitisnamedinthe LIB
environment variable. For example, in AUTOEXEC.BAT:

SET LIB=C:\LIB

To proceed with installation, skip to the sections that address your target
environment.

10-24

Chapter 10

Installing for Microsoft C in a Windows NT
Environment

Requirements

e Microsoft Visual C++ 6.0 Service Pack 3
e Microsoft Windows Platform SDK

e Microsoft Windows NT

e Wonderware InTouch 7.1 (or later)

e Pentium machines supported

Support
Windows NT for the Intel Platforms is supported

Files Required for Development

PTACC.LIB must bein LIB path (for example, C:\LIB)

PTACCH must be in INCLUDE path (for example, C\INCLUDE)
Samples

\SAMPLES\WWINSIMPL Sample #2
\SAMPLES\WWINCMPLX Sample #3

\SAMPLES\CIDEAAPP Sample #4

Microsoft Visual C++ MFC Cldea C++ sample which functions the same as Sample
#2. The paths in the INCLUDE (CAINTOUCH\SCRIPT\INC) and LIBRARY
(CA\INTOUCH\SCRIPT\LIB) environment variables must be set before being built.
Once done, all dependencies must be regenerated (both release and debug). After
building the application, it must be copied to the InTouch directory to run correctly.

IDEA Toolkit 10-25

Running IDEA Toolkit Samples

Before proceeding with the samples, ensure that you have installed InTouch 7.1 or
later and have installed the IDEA Toolkit.

Step 1

For any of the samples delivered on the IDEA Toolkit, you must run InTouch
WindowViewer with the application supplied. Run View using this application
before starting any of the samples.

Windows C 32-bit Simple Sample
(\IDEA\SAMPLES\WINSIMPL)

To run this sample, simply run \IDEA\EXE\WINSIMPL.EXE after completing Step
1. Position the sample on the left side of your screen. Now, in InTouch, press the
button labeled "Do Calculation". This button sets the InTouch variable DoCalc,
which the sample notices, performs the cal culation, and InTouch updates the screen
with the result generated by WINSIMPL.EXE. Experiment with the sample source
code, rebuild the sample and re-test. For example, change the formulato multiply
the 3 inputs then multiply by 2 and seeif the resultsin InTouch correspond.

Windows C 32-bit Complex Sample
(\IDEA\SAMPLES\WINCMPLX)

To run this sample, simply run \IDEA\EXE\WINCMPL X .EXE after completing
Step 1. Position the sample on the left side of your screen. Y ou should see the
current value of $TimeString and $Second displayed on the screen.

Windows C++ 32-bit Simple Sample
(\IDEA\SAMPLES\CIDEAAPP)

To run this sample, simply run \IDEA\EXE\CIDEAAPP.EXE &fter completing Step
1. Position the sample on the left side of your screen. Now, in InTouch, press the
button labeled "Do Calculation". This button sets the InTouch variable DoCalc,
which the sample notices, performs the cal culation, and InTouch updates the screen
with the result generated by CIDEAAPP.EXE. Experiment with the sample source
code, rebuild the sample and re-test. For example, change the formulato multiply
the 3 inputs then multiply by 2 and seeif the resultsin InTouch correspond.

To run this sample, copy \IDEA\EXE\CIDEAAPP.EXE to the InTouch directory. It
can be run after completing Step 1.

Running Windows NT Samples

To run the NT samples, make sureit'sin your InTouch directory or InTouch isin
your PATH.

Visual Basic 6.0 32-Bit Sample
(IDEA\SAMPLES\VBSIMPLE\VB®6)

To run this sample, you must first run InTouch. Select the "\...\VB6I TAPP"
application and click the WindowViewer [con. Run the IDEA\EXE\VB5APP.EXE.
The sample gives you the capability to read and write values to and from
WindowViewer. To update valuesin Visua Basic, Click Update/Read All from the
Visual Basic application menu.

10-26

Chapter 10

Function Reference

This section contains a description of each function in the InTouch Database
External Access (IDEA) Toolkit. The parameters passed to each function and the
returned value are described.

Function

Summary

Initialization Functions

ACCID PtAccl nit(hwhd, nExtraBytes)

HPT PtAccActivate(acclD, Name)

HPT PtAccHandleCreate(acclD, Name)

int PtAccHandleActivate(acclD, hPt)

PTYPE PtAccType(acclD, hPt)

HPT PtAccActivateAndNotify(acclD, Name)

HPT PtAccActivateAndSendNotify(acclD, Name)
HPT PtAccHandleActivateAndNotify(acclD, hPt)
HPT PtAccHandleActivateAndSndNotify(acclD, hPt)

Data Read Functions

int
long
float
double

void

PtAccReadD(acclD, hPt)

PtAccReadl (acclD, hPt)

PtAccReadR(acclD, hPt)

PtAccReadA(acclD, hPt)

PtAccReadM (acclD, hPt, SringBuffer, StringBufferLength)

Data Write Functions

int
int
int
int

int

PtAccWriteD(acclD, hPt, value)
PtAccWritel (acclD, hPt, value)

PtAccWriteR(acclD, hPt, value)
PtAccWriteA(acclD, hPt, value)
PtAccWriteM (acclD, hPt, value)

IDEA Toolkit

10-27

Shutdown Functions

int
int
int
int
int

void

PtAccDeactivate(acclD, hPt)
PtAccDelete(acclD, hPt)
PtAccHandleDeactivate(acclD, hPt)
PtAccHandleDelete(acclD, hPt)
PtAccShutdown(acclD)
PtAccShutdownAllAssociated(hwid)

Miscellaneous Functions

Int

int

int

long
long
ACCID

PtAccOK (acclD)

PtAccSetExtralnt(acclD, hPt, offset, value)
PtAccGetExtral nt(acclD, hPt, offset)
PtAccSetExtral ong(acclD, hPt, offset, value)
PtAccGetExtral ong(acclD, hPt, offset)
PtAccACCIDFromHPT(hPt)

10-28

Chapter 10

PtAcCcACCIDFromHPT

Description

Returned Value

Example

ACCI D

Pt AccACCl DFr onmHPT(HPT hPt)

This function returns the Access Id for a given Point Handle. Thisis useful when
processing DbChgM sg messages. The DbChgM sg message provides the HPT of the

variable that changed. Y ou must have the ACCID before you can call any of the
PtAccRead functions.

Parameter Description

hPt Thisisthe Point Handle created by acall to
PtAccHandleCreate or PtAccActivate that
identifies a variable that is temporarily not needed.

Thereturned value is an Access Id (of type ACCID) that was used when the hPt was
created.

HPT hPt Seconds;
doubl e SecondsVal ue;

i f(message == dbChgMsg) {

/* Notification of point change... */
/* | Param has the HPT of the variable that changed. */

hPt Seconds = (HPT) I Par am
accl D = Pt AccACCI DFr omHPT(hPt Seconds) ;
SecondsVal ue = Pt AccReadA(accl D, hPt Seconds);

} else switch(nmessage) {
/* Usual W ndows nessage processing here */
}

IDEA Toolkit 10-29

PtAccActivate

Description

Return Value

Comments

Example

HPT
Pt AccActi vate(ACCI D accl D,
LPSTR | pszNane)

PtAccActivate performs two functions that must be done beforeiit is possible to
access avariable in InTouch. It converts the variable's name to a handle that allows
faster access, and it notifies InTouch to activate the variable. This ensures that
InTouch has the up-to-date value of the variable.

Parameter Description

acclD Thisisahandle of type ACCID returned by a
previous cal to PtAccl nit.

IpszName Thisisthe variable name (tagname or field name)
that will be accessed. The name must be a far
pointer to a null-terminated ASCII string.

The returned value is a handle of the type HPT that can be used in subsequent
function calls to read or write the tagname named by IpszZName. A NULL returned
value indicates afailure; probably the IpszName is not known to InTouch.

PtAccActivate function is equivalent to a call to PtAccHandleCreate and
PtAccHandleActivate. When activating and deactivating points,
PtAccHandleActivate and PtAccHandleDeactivate should be used.
PtAccActivate creates a point handle each time, which is unnecessary.

Note If aprogram makes multiple callsto PtAccActivate for the same variable
name, multiple independent HPTs will be created.

HPT hPt Seconds;

hPt Seconds = Pt AccActivate(acclD, "$Second"));
if(hPtSeconds !'= NULL) {
/* $Second can be read/witten using acclD and hPt Seconds */

}

10-30

Chapter 10

PtAccActivateAndNotify

Description

Return Value

Comments

Example

Note Thisfunction isnot availablein Visua Basic.

HPT

Pt AccAct i vat eAndNot i fy(ACCI D accl D,
LPSTR | pszNane)

Thisfunction is similar to PtAccActivate. In addition to creating a Point Handle and
activating it, it requests the runtime database to post (using PostMessage) a
dbChgMsg message to the window whose handle was used in the PtAcclnit() call
that created the accl D when the value changed. This function is not available to
Visual Basic applications.

Parameter Description

acclD Thisisahandle of type ACCID returned by a
previous call to PtAccl nit. The window whose
handle was used in the call to PtAcclnit will
receive the change notification messages.

IpszTagname Thisisthe variable name (tagname or field name)
that will be accessed. The name must be a far
pointer to a null-terminated ASCII string.

The returned value is a handle of the type HPT that can be used in subsequent
function calls to read or write the tagname named by IpszZName. A NULL returned
value indicates afailure; probably the IpszName is not known to InTouch.

For a description of point activation, see "Functional Description™ earlier in this
chapter.

Note A program that is using this feature must register the DBCHGM SG message
with Windows and must check for this message in the main message processing
loop. Example #3 shows how thisis done.

HPT hPt Seconds;

hPt Seconds = Pt AccActi vat eAndNotify(acclD, "$Second"));
if(hPtSeconds !'= NULL) {

/* $Second can be read/witten using acclD and hPt Seconds */

}

IDEA Toolkit 10-31

PtAccActivateAndSendNotify

Description

Return Value

Comments

Example

Note Thisfunction isnot availablein Visua Basic.

HPT

Pt AccAct i vat eAndSendNot i fy(ACCI D accl D,
LPSTR | pszNane)

Thisfunction is similar to PtAccActivate. In addition to creating a Point Handle
and activating it, it requests the runtime database to send (using SendMessage) a
dbChgM sg message to the window whose handle was used in the PtAccl nit() call
that created the accl D when the value changed. This function is not available to
Visual Basic applications.

Parameter Description

acclD Thisisahandle of type ACCID returned by a
previous call to PtAcclnit. The window whose
handle was used in the call to PtAccl nit will
receive the change notification messages.

IpszName Thisisthe variable name (tagname or field name)
that will be accessed. The name must be afar
pointer to a null-terminated ASCII string.

The returned value is a handle of the type HPT that can be used in subsequent
function calls to read or write the tagname named by |pszName.

For a description of point activation, see "Functional Description™” earlier in this
chapter.

Note A program that is using this feature must register the DBCHGM SG message
with Windows and must check for this message in the main message processing
loop. Example #3 shows how thisis done.

HPT hPt Seconds;

hPt Seconds = Pt AccActi vat eAndSendNoti fy(accl D, "$Second"));
if(hPtSeconds != NULL) {
/* $Second can be read/witten using acclD and hPt Seconds */

}

10-32

Chapter 10

PtAccDeactivate

Description

Return Value

Example

int
Pt AccDeact i vat e(ACCI D accl D,
HPT hPt)

PtAccDeactivate notifies InTouch that avariable is no longer needed. This makesit
possible to stop polling an item that originatesin al/O server program. The Point
Handle remains valid and can later be activated by a call to PtAccHandleActivate.
While a Point Handle isin the deactivated state, the program should not read its
value, as the returned value may not be current.

Parameter Description

acclD Thisisahandle of type ACCID returned by a
previous cal to PtAccl nit.

hPt Thisisthe Point Handle created by acall to

PtAccHandleCreate or PtAccActivate that
identifies a variable that is temporarily not needed.

Thereturned valueis 1 if successful or O if the function failed.

if(PtAccDeactivate(acclD, hPtSeconds)) {
/* hPt Seconds not "in use", not being polled */
} else {

/* Error, acclD or hPtSeconds is invalid */
}

PtAccDelete

Description

Return Value

Example

int
Pt AccDel et e(ACCI D accl D,
HPT hPt)

PtAccDelete deletes a Point Handle. After calling PtAccDelete the Point Handle
must not be used. If the point was activated, it must be deactivated by an explicit
call to PtAccDeactivate before PtAccDeleteis called.

Parameter Description

acclD Thisisahandle of type ACCID returned by a
previous cal to PtAccl nit.

hPt Thisisthe Point Handle created by acall to

PtAccHandleCreate or PtAccActivate that
identifies a variable that is no longer needed.

Thereturned valueis 1 if successful or O if the function failed.

if(PtAccDel ete(acclD, hPtSeconds)) {

hPt Seconds = NULL;

/* hPt Seconds del eted */
} else {

/* Error, acclD or hPtSeconds is invalid */
}

IDEA Toolkit 10-33

PtAccGetExtralnt

Description

Return Value

Example

int

Pt AccGet Extral nt (ACCI D accl D,
HPT hPt,
int nOffset)

PtAccGetExtralnt retrieves avalue from a 4-byte (32-bit) field at the specified
offset within the extra storage area allocated for the specified HPT. If thisfeature is
to be used, IDEA must have been told to allocate extra storage for each HPT. This
is done with the nExtraBytes argument specified in the call to PtAccl nit that

created the ACCID.

Parameter Description

acclD Thisisahandle of type ACCID returned by a
previous cal to PtAccl nit.

hPt Thisisthe Point Handle created by acall to
PtAccHandleCreate or PtAccActivate that
identifies the variable whose extra storage areais to
be retrieved.

nOffset The offset in the extra storage area from which the

4-byte valueisto be retrieved. The offset must be
between 0 and the size of the area minus 4 (32-bit).
The size of the areais determined by the
nExtraBytes argument to PtAccl nit.

The returned value is the integer data that was stored in the two bytes of extra
storage area at the offset specified by nOffset.

ACCI D accl D;
HPT hPt Tag;

int Val ueFrontCf f set 12;

acclD = PtAcclnit(hwhd, sizeof(int));
hPt Tag = Pt AccActivate(acclD, "Variabl eNane");
Pt AccSet Extral nt (accl D, hPtTag, 0, DataToSave);

/* later | can retrieve the DataToSave */

Val ueFronOf f set 12 =

Pt AccGet Extral nt (accl D, hPtTag, 12);

10-34

Chapter 10

PtAccGetExtraLong

Description

Return Value

Example

| ong

Pt AccGet ExtraLong(ACCI D accl D,
HPT hPt,
int nOffset,

I ong | Val ue)

PtAccGetExtral ong retrieves a value from an 8-byte (32-bit) field at the specified
offset within the extra storage area allocated for the specified HPT. If thisfeature is
to be used, IDEA must have been told to allocate extra storage for each HPT. This
is done with the nExtraBytes argument specified in the call to PtAcclnit that created
the ACCID.

Parameter Description

acclD Thisisahandle of type ACCID returned by a
previous call to PtAccl nit.

hPt Thisisthe Point Handle created by acall to

PtAccHandleCreate or PtAccActivate that
identifies the variable whose extra storage areaisto
be retrieved.

nOffset The offset in the extra storage area from which the
8-byte valueisto beretrieved. The offset must be
between 0 and the size of the area minus 8 (32-bit).
The size of the areais determined by the
nExtraBytes argument to PtAccl nit.

[Value Thisisthe new 4-byte value to be stored.

The returned value is the long integer datathat was stored in the four bytes of extra
storage area at the offset specified by nOffset.

ACCI D accl D,
HPT hPt Tag;
| ong Val ueFr ontX f set O;

acclD = PtAcclnit(hwWhd, sizeof(long));
hPt Tag = Pt AccActivate(acclD, "Variabl eNane");
Pt AccSet ExtraLong(accl D, hPtTag, O, LongDataToSave);

/* later | can retrieve the LongDataToSave */
Val ueFront f set0 = Pt AccGet ExtralLong(acclD, hPtTag, 0);

IDEA Toolkit 10-35

PtAccHandleActivate
int
Pt AccHandl eActi vat e(ACCI D accl D,
HPT hPt)

Description This function requests InTouch to activate the variable associated with the Point
Handle. This causes InTouch to consider the point to be in use so that its current
valuewill be available.

Parameter Description

acclD Thisisahandle of type ACCID returned by a
previous cal to PtAccl nit.

hPt Thisisthe Point Handle created by acall to

PtAccHandleCreate or PtAccActivate that
identifies a variable that will be used.

Return Value Thereturned valueis 1 if successful or O if the function failed.

Example hPt Seconds = Pt AccHandl eCreate(accl D, "$Second");
if((hPtSeconds != NULL) &&
Pt AccHandl eActi vate(accl D, hPtSeconds)) {
/* $Second can be read/witten using acclD and hPt Seconds */

}

10-36

Chapter 10

PtAccHandleActivateAndNotify

Description

Return Value

Comments

Example

Note Thisfunction isnot availablein Visua Basic.

int
Pt AccHandl eAct i vat eAndNot i fy(ACCI D accl D,
HPT hPt)

Thisfunction is similar to PtAccHandleActivate. In addition to activating a Point
Handle, it requests the runtime database to post (using PostMessage) a dbChgMsg
message to the window whose handle was used in the PtAcclnit() call that created
the accl D when the value changed. This function is not available to Visual Basic
applications.

Parameter Description

acclD Thisisahandle of type ACCID returned by a
previous call to PtAccl nit. The window whose
handle was used in the call to PtAccl nit will
receive the change notification messages.

hPt Thisisthe Point Handle created by acall to
PtAccHandleCreate or PtAccActivate that
identifies a variable that will be used.

Thereturned value is 1 if successful or O if the function failed. If thiscall failsina
Windows Environment, make sure that the hWnd parameter on the PtAccl nit is
correct.

For adescription of point activation, see "Functional Description™” earlier in this
chapter.

Note A program that is using this feature must register the DBCHGM SG message
with Windows and must check for this message in the main message processing
loop. Example #3 (described earlier in this chapter) shows how thisis done.

HPT hPt Seconds;

hPt Seconds = Pt AccHandl eCreate(accl D, "$Second"));
if(hPtSeconds != NULL) {

/* $Second can be read/witten using acclD and hPt Seconds
*/
Pt AccHandl eActi vat eAndNot i fy(accl D, hPt Seconds);

/* Now, when $Second changes, InTouch will send a nessage
*/

/* Refer to Exanple #3 for nore detail.
*/

IDEA Toolkit

10-37

PtAccHandleActivateAndSndNotify

Note Thisfunction isnot availablein Visua Basic.

int
Pt AccHandl eAct i vat eAndSndNot i fy(ACCI D accl D,
HPT hPt)

Description This function is similar to PtAccHandleActivate. In addition to activating a Point
Handle, it requests the runtime database to send (using SendMessage) a dbChgMsg
message to the window whose handle was used in the PtAcclnit() call that created

the acclD. Thisfunction is not available to Visual Basic applications.

Parameter Description

acclD Thisisahandle of type ACCID returned by a
previous call to PtAccl nit. The window whose
handle was used in the call to PtAccl nit will
receive the change notification messages.

hPt Thisisthe Point Handle created by acall to
PtAccHandleCreate or PtAccActivate that
identifies a variable that will be used.

Return Value Thereturned value is 1 if successful or O if the function failed. If thiscall failsina
Windows Environment, make sure that the hWnd parameter on the PtAccl nit is
correct.

Comments For adescription of point activation, see "Functional Description™” earlier in this
chapter.

Note A program that is using this feature must register the DBCHGM SG message
with Windows and must check for this message in the main message processing

loop. Example #3 (described earlier in this chapter) shows how thisis done.

Example HPT hPt Seconds;

hPt Seconds = Pt AccHandl eCreate(accl D, "$Second"));

if(hPtSeconds != NULL) {

/* $Second can be read/witten using acclD and hPt Seconds

*/

Pt AccHandl eActi vat eAndSndNot i fy(accl D, hPt Seconds);

/* Now, when $Second changes, InTouch will
*/

/* Refer to Exanple #3 for nore detail.
*/

send a nessage

10-38

Chapter 10

PtAccHandleCreate

Description

Return Value

Example

HPT

Pt AccHandl eCreat e(ACCI D accl D,
LPSTR | pszNane)

Before atagname (variable) from the InTouch database can be read or written, the
program must call PtAccHandleCreate or PtAccActivate specifying the name of
the variable so that it can be verified and a Point Handle (HPT) can be set up. Once
the Point Handleis set up, reads and writes of the variable can be done very quickly
because the lengthy name comparisons are no longer needed.

Parameter Description

acclD Thisisahandle of type ACCID returned by a
previous cal to PtAccl nit.

IpszName Thisisthe variable name (tagname or field name)
that will be accessed. The name must be a far
pointer to a null-terminated ASCII string.

The returned value is a handle of the type HPT that can be used in subsequent
function calls to read or write the tagname named by IpszZName. A NULL returned
value indicates afailure; probably the IpszName is not known to InTouch.

ACCI D accl D,
HPT hPt Seconds;

hPt Seconds = Pt AccHandl eCreate(acclD, "$Second"));
if(hPtSeconds !'= NULL) {
i f(PtAccHandl eActivate(acclD, hPtSeconds)) {
/* $Second can be read/witten using acclD and hPt Seconds

}

*/
}

IDEA Toolkit 10-39

PtAccHandleDeactivate

int
Pt AccHandl eDeactivate(ACCI D accl D,
HPT hPt)
Description Thisfunction is equivalent to acall to PtAccDeactivate. It causes InTouch to

consider the variable to be not in use. The Point Handle remains valid and can later
be activated by acall to PtAccHandleActivate. While aPoint Handleisin the
deactivated state, the program should not read its value. The returned value may not

be current.
Parameter Description
acclD Thisisahandle of type ACCID returned by a
previous cal to PtAcclnit.
hPt Thisisthe Point Handle created by acall to
PtAccHandleCreate or PtAccActivate that
identifies a variable that is temporarily not needed.
Return Value Thereturned valueis 1 if successful or 0 if the function failed.
Example i f(PtAccHandl eDeactivate(acclD, hPtSeconds)) {
/* hPt Seconds not "in use", not being polled */
}else {

/* Error, acclD or hPtSeconds is invalid */

}

PtAccHandleDelete

int
Pt AccHandl eDel et e(ACCI D accl D,
HPT hPt)
Description Thisfunction is equivalent to a call to PtAccDelete. It deletes a Point Handle. After

calling PtAccHandleDelete the Point Handle must not be used. If the point was
activated, it must be deactivated by an explicit call to PtAccHandleDeactivate
before PtAccHandleDeleteis called.

Parameter Description

acclD Thisisahandle of type ACCID returned by a
previous cal to PtAccl nit.

hPt Thisisthe Point Handle created by acall to

PtAccHandleCreate or PtAccActivate that
identifies a variable that is no longer needed.

Return Value Thereturned valueis 1 if successful or O if the function failed.

Example i f(PtAccHandl eDel ete(accl D, hPtSeconds)) {
hPt Seconds = NULL;
/* hPt Seconds del eted */
}else {
/* Error, acclD or hPtSeconds is invalid */
}

10-40

Chapter 10

PtAcclnit

Description

ACCI D

Pt Accl nit(HWND hwWhd,
int nExtraBytes)

Thefirst step required to access information from the InTouch runtime database is
to call PtAcclnit. It verifies that the InTouch runtime database is accessible and
prepares for the other InTouch access functions that will be called. If PtAcclnit
returns aNULL handle, it indicates that InTouch is not running. The program may
repeat the call until anon-NULL return value is received which indicates that
InTouch has become ready.

Parameter Description

Return Value

Example

hwnd In aWindows program, thisis the window handle of
the window that will receive notifications of value
changes for dataitems. Typically, thiswill be the
program's parent window. It may be NULL if
change notifications are not needed.

In aWindows program, if thisargument is NULL or
0, then no error will occur until the
PtAccHandleActivateAndNotify.

nExtraBytes A program may specify that some extra storage be
allocated for each dataitem that is being accessed.
If nExtraBytesis non-zero, it indicates the number
of bytes of extra storage to be allocated for each
dataitem. The storageis allocated when
PtAccHandleCreate or PtAccActivateiscalled
and the extra storage is associated with the Point
Handle returned. The storage area can be accessed
by PtAccSetExtralnt, PtAccSetExtral ong,
PtAccGetExtralnt and PtAccGetExtral ong.

Thereturn valueisan Access Id handle (of type ACCID) that identifiesa
connection to the InTouch runtime database. It must be saved and passed to other
functions that access the database. If NULL isreturned, it indicatesthat InTouch is
not available.

#i ncl ude "ptacc. h"

ACCI D accl D;
extern HW\D hWhdMai n;
do {

acclD = PtAcclnit(hwdMain, 8);
/* 8 bytes extra storage */

} while(‘acclD == NULL);

IDEA Toolkit 10-41

PtAccOK

Description

Return Value

Example

int
Pt AccOK(ACCID acclD)

After reading all of the tagnamesto be used in a computation, the program should
call PtAccOK to ensurethat InTouch is still accessible and the tagname values that
wereread arevalid. If PtAccOK returns FALSE, it indicates that InTouch has been
shut down. Values read should not be used and the program should call
PtAccShutdown for each ACCID handle that was created by callsto PtAccl nit.
After that, the program can wait for InTouch to be restarted by periodically calling
PtAcclnit until anon-NULL valueis returned.

Parameter Description

acclD Thisisahandle of type ACCID returned by a
previous cal to PtAccl nit.

Thereturned valueis 1 if InTouch is still accessible and the tagnames read since the
last call arevalid. The return value is 0 otherwise.

ACCI D accl D,

if(!'PtAccOK(acclD)) {

Pt AccShut down(accl D);

accl D = NULL;

/*Need to go back and wait for PtAcclnit to return non-
NULL

*/

PtAccReadA

Description

Return Value

Example

doubl e

Pt AccReadA(ACCI D accl D,
HPT hPt)

PtAccReadA returns the current value of an InTouch discrete, integer or floating
point variable.

Parameter Description

acclD Thisisahandle of type ACCID returned by a
previous cal to PtAccl nit.

hPt Thisisthe Point Handle created by acall to

PtAccHandleCreate or PtAccActivate that
identifies the variable whose value to return.

The returned value is the value of the variable. A variable of discrete, integer or
floating point typeis converted to a 64-bit | EEE floating point number. Discretes
are represented by 1.0 or 0.0.

doubl e TagVal ue;
HPT hPt Tag;

hPt Tag = Pt AccActivate

(accl D, "Discretel nteger O Real TagNane");
if(hPtTag !'= NULL) {

TagVal ue = Pt AccReadA(accl D, hPtTag);
}

10-42

Chapter 10

PtAccReadD

Description

Return Value

Comments

Example

int
Pt AccReadD(ACCI D accl D,
HPT hPt)
PtAccReadD returns the current value of an InTouch discrete variable.
Parameter Description
acclD Thisisahandle of type ACCID returned by a
previous call to PtAccl nit.
hPt Thisisthe Point Handle created by acall to

PtAccHandleCreate or PtAccActivate that
identifies the variable whose value to return.

Thereturned valueis 1 if the discrete variableis ON, O if the discrete variableis
OFF.

If the type of the variable (hPt) being read is other than discrete, it will be converted
to adiscrete value as follows:

Integer If variable is 0, the result is 0. Otherwise theresult is 1.
Redl If variable is 0.0, the result is 0. Otherwise theresult is 1.

String Thisisan error condition, the returned value is aways 0.

i nt TagVal ue;
HPT hPt Tag;

hPt Tag = Pt AccActivate(acclD, "DiscreteTagNanme");
if(hPtTag !'= NULL) {

TagVal ue = Pt AccReadD(accl D, hPtTag);
}

IDEA Toolkit 10-43

PtAccReadl

| ong
Pt AccReadl (ACCI D accl D,
HPT hPt)
Description PtAccReadl returnsthe current value of an InTouch integer variable.
Parameter Description
acclD Thisisahandle of type ACCID returned by a
previous call to PtAccl nit.
hPt Thisisthe Point Handle created by acall to
PtAccHandleCreate or PtAccActivate that
identifies the variable whose value to return.
Return Value The returned value is the value of the variable. It is a 32-bit signed integer.
Comments If the type of the variable (hPt) being read is other than integer, it will be converted

to an integer value as follows:
Discrete If variable is off or O, the result is 0. Otherwise theresult is 1.

Real If variable isless than -2,147,483,648 the result is -2,147,483,648. If
variableis greater than +2,147,483,647, the result is +2,147,483,647.
Otherwise the result is the nearest integer value to the floating point
value.

String Thisisan error condition, the returned value is always the maximum
long integer value (2,147,483,647.)

Example | ong TagVal ue;
HPT hPt Tag;

hPt Tag = Pt AccActivate(acclD, "Integer TagName");
if(hPtTag !'= NULL) {

TagVal ue = Pt AccReadl (accl D, hPtTag);
}

10-44

Chapter 10

PtAccReadM

Description

Return Value
Comments

Example

voi d

Pt AccReadM ACCI D accl D,

LPSTR | pszVal

int nMax)

PtAccReadM returns the current value of an InTouch string variable.

Parameter Description

acclD Thisisahandle of type ACCID returned by a
previous cal to PtAccl nit.

hPt Thisisthe Point Handle created by acall to
PtAccHandleCreate or PtAccActivate that
identifies the variable whose value to return.

IpszVal A far pointer to athe string buffer where the
variabl€'s current value is to be returned. This buffer
must be at least 132 bytes in length to accommodate
the maximum length InTouch string.

nMax Thelength of the string buffer IpszVval. If the
InTouch string is longer than nMax, it will be
truncated to fit the string buffer.

Void, none.

None.

char TagVal ue[132];

HPT hPt Tag;

hPt Tag = Pt AccActivate(acclD, "StringTagNane");

if(hPtTag !'= NULL) {

Pt AccReadM accl D, hPt Tag, TagVal ue, sizeof (TagVal ue));

}

IDEA Toolkit 10-45

PtAccReadR

Description

Return Value

Comments

Example

f | oat
Pt AccReadR(ACCI D accl D,
HPT hPt)
PtAccReadR returns the current value of an InTouch floating point variable.
Parameter Description
acclD Thisisahandle of type ACCID returned by a
previous cal to PtAccl nit.
hPt Thisisthe Point Handle created by acall to

PtAccHandleCreate or PtAccActivate that
identifies the variable whose value to return.

The returned value is the value of the variable. It is a 32-bit IEEE floating point
number.

If the type of the variable (hPt) being read is other than real, it will be converted to
areal value asfollows:

Discrete If variableis off or O, the result is 0.0. Otherwise the result is 1.0.

Integer The 32-bit signed integer is converted to 32-bit | EEE floating point
format. Thereis potential for loss of significant digits.

String Thisisan error condition, the returned value is aways the largest
positive floating point value, approximetely 3.4 e 38.

fl oat TagVal ue;

HPT hPt Tag;

hPt Tag = Pt AccActivate(acclD, "FloatingPoint TagNanme");
if(hPtTag !'= NULL) {

TagVal ue = Pt AccReadR(accl D, hPtTag);
}

10-46 Chapter 10

PtAccSetExtralnt
int
Pt AccSet Extral nt (ACCI D accl D,
HPT hPt,

int nOfset,
int nValue)

Description PtAccSetExtral nt writes avalue to a4-byte (32-bit) field at the specified offset
within the extra storage area allocated for the specified HPT. If this feature is used,
IDEA must have been told to allocate extra storage for each HPT. Thisis done with
the nExtraBytes argument specified in the call to PtAcclnit that created the ACCID.

Parameter Description

acclD Thisisahandle of type ACCID returned by a
previous cal to PtAcclnit.

hPt Thisisthe Point Handle created by acall to

PtAccHandleCreate or PtAccActivate that
identifies the variable whose extra storage areais to
be modified.

nOffset The offset in the extra storage area where the 4-byte
value isto be stored. The offset must be between 0
and the size of the area - 4. The size of the areaiis
determined by the nExtraBytes argument to

PtAcclnit.
nValue Thisisthe new 4-byte value to be stored.
Return Value The value returned is the previous contents of the 4-byte field.

Example int a dval ue;

A dVal ue = Pt AccSetExtralnt(accl D, hPtTag, 0, Newval ue);

IDEA Toolkit 10-47

PtAccSetExtraLong

| ong

Pt AccSet Ext raLong(ACCI D accl D,
HPT hPt,
int nOffset,
I ong | Val ue)

Description PtAccSetExtral ong writes avalue to a 4-byte (32-bit) field at the specified offset
within the extra storage area allocated for the specified HPT. If this featureisto be
used, IDEA must have been told to allocate extra storage for each HPT. Thisis
done with the nExtraBytes argument specified in the call to PtAcclnit that created

the ACCID.
Parameter Description
acclD Thisisahandle of type ACCID returned by a
previous cal to PtAcclnit.
hPt Thisisthe Point Handle created by acall to
PtAccHandleCreate or PtAccActivate that
identifies the variable whose extra storage areais to
be modified.
nOffset The offset in the extra storage area where the 8-byte
value isto be stored. The offset must be between 0
and the size of the area - 4. The size of the areaiis
determined by the nExtraBytes argument to
PtAcclnit.
IValue Thisisthe new 4-byte value to be stored.
Return Value The value returned is the previous contents of the 4-byte field.
Example | ong a dval ue;

A dVal ue = Pt AccSet ExtraLong(accl D, hPt Tag, 0, Newval ue);

10-48

Chapter 10

PtAccShutdown

Description

Return Value

Example

int
Pt AccShut down(ACCI D accl D)

PtAccShutdown cleans up and shuts down a connection to InTouch (represented
by an ACCID.)

Parameter Description

acclD Thisisahandle of type ACCID returned by a
previous cal to PtAccl nit.

Thereturned valueis 1 if successful or O if the function failed.

if(PtAccShutdown(acclD)) {
/* acclDis no longer valid */
accl D = NULL;

} else {
/* FALSE return indicates that the acclD was invalid */
}

PtAccShutdownAllAssociated

Description

Return Value

Example

voi d
Pt AccShut downAl | Associ at ed(HWAD hWhd)

PtAccShutdownAllAssociated cleans up and shuts down every connection to
InTouch (ACCID) that was created in association with the specified hwid.

Parameter Description

hwnd Thisisawindow handle that was used in one or
more calls to PtAccl nit. Every associated ACCID
will be shut down.

Void, none.
switch(nessage) {

case WM ENDSESSI ON:
case WM DESTROY:

if(!PtAccShutdownAl | Associated(hwd)) {
/* Error */
}

IDEA Toolkit 10-49

PtAccType

PTYPE
Pt AccType(ACCI D accl D,
HPT hPt)
Description PtAccType returns a code that indicates the type of an InTouch variable.
Parameter Description
acclD Thisisahandle of type ACCID returned by a
previous cal to PtAccl nit.
hPt Thisisthe Point Handle created by acall to
PtAccHandleCreate or PtAccActivate that
identifies the variable whose typeis to be returned.
Return Value The returned value is a code of the type PTY PE that indicates the type of the
variable:
PT_DISCRETE
PT_INTEGER
PT_REAL
PT_STRING

NULL isreturned in the case of aninvalid ACCID or HPT.

Example int SecondsType;

SecondsType = Pt AccType(accl D, hPtSeconds);
swi tch(SecondsType) {
case PT_I NTECER:
Seconds = Pt AccReadl (accl D, hPtSeconds);
br eak;
case PT_REAL:
Seconds = Pt AccReadR(accl D, hPt Seconds);
br eak;
defaul t:
br eak;

10-50

Chapter 10

PtAccWriteA

Description

Return Value

Comments

Example

int

Pt AccWiteA(ACCI D accl D,

HPT hPt,
doubl e dVal ue)

PtAccWriteA sets anew vaueinto an InTouch discrete, integer or floating point

variable.

Parameter Description

acclD Thisisahandle of type ACCID returned by a
previous cal to PtAccl nit.

hPt Thisisthe Point Handle created by acall to
PtAccHandleCreate or PtAccActivate that
identifies the variable whose value to set.

dVvalue Thisisthe new 64-bit |IEEE value to set into the

InTouch variable.

Thereturned valueis 1 if successful or O if the function failed.

The value being written will be converted to the appropriate type according to the
type of the InTouch variable as follows:

Discrete

Integer

Real

String

If dValueis 0.0, O iswritten to the InTouch variable. Otherwise 1 is
written.

If dValue is greater than the maximum 32-bit signed integer value
(2,147,483,647) the InTouch variable will be set to the maximum. If
dValue is less than the minimum 32-bit signed integer value (-
2,147,483,648) the InTouch variable will be set to the minimum.
Otherwise, dValueis converted to a 32-hit signed integer.

If dValue is greater than the maximum 32-bit | EEE floating point
value (3.4 e 38) the InTouch variable will be set to the maximum. If
dValue is less than the minimum 32-bit | EEE floating point value (-
3.4 e 38) the InTouch variable will be set to the minimum. Otherwise,
dValue is converted to a 32-bit IEEE floating point value.

Thisisan error condition, no write takes place.

if('PtAccWiteA(acclD, hPtTag, NewDoubleValue)) {
/* Error, acclD or hPtTag invalid */

}

IDEA Toolkit 10-51

PtAccWriteD

Description

Return Value

Comments

Example

int

Pt AccWiteD(ACCI D accl D,
HPT hPt,
int bVal ue)

PtAccWriteD sets anew vaueinto an InTouch discrete variable.

Parameter Description

acclD Thisisahandle of type ACCID returned by a
previous cal to PtAccl nit.

hPt Thisisthe Point Handle created by acall to

PtAccHandleCreate or PtAccActivate that
identifies the variable whose value to set.

bValue The new value for the variable. If bValueis 0, the
InTouch discrete variable is set to OFF, otherwise it
is set to ON.

Thereturned valueis 1 if successful or O if the function failed.

If the type of the variable (hPt) being written is other than discrete, it will be
converted to the appropriate value as follows:

Integer If bValueis zero, 0 is written to the InTouch variable. Otherwise 1L is
written.

Real If bValueis zero, 0.0 iswritten to the InTouch variable. Otherwise 1.0
iswritten.

String Thisisan error condition, no write takes place.

if('PtAccWiteD(acclD, hPtTag, NewDi screteValue)) {
/* Error, acclD or hPtTag invalid */

}

10-52 Chapter 10

PtAccWritel

int
Pt AccWitel (ACCI D accl D,
HPT hPt,
I ong | Val ue)
Description PtAccWritel setsanew valueinto an InTouch integer variable.
Parameter Description
acclD Thisisahandle of type ACCID returned by a
previous cal to PtAccl nit.
hPt Thisisthe Point Handle created by acall to
PtAccHandleCreate or PtAccActivate that
identifies the variable whose value to set.
[Value Thisisthe new value to be set into the InTouch
variable.
Return Value Thereturned valueis 1 if successful or 0 if the function failed.
Comments If the type of the variable (hPt) being written is other than integer, it will be

converted to the appropriate value as follows:
Discrete If IValueis zero, O iswritten to the InTouch variable. Otherwise 1 is

written.
Red IValue is converted to a 32-bit |EEE floating number. Thereis
potential for loss of significant digits.
String Thisisan error condition, no write takes place.
Example if('PtAccWitel(acclD, hPtTag, New ntegerValue)) {

/* Error, acclD or hPtTag invalid */

}

IDEA Toolkit 10-53

PtAccWriteM

int
Pt AccWiteM ACCI D accl D,
HPT hPt,
LPSTR | pszVal ue)
Description PtAccWriteM setsanew value into an InTouch string variable.
Parameter Description
acclD Thisisahandle of type ACCID returned by a
previous cal to PtAccl nit.
hPt Thisisthe Point Handle created by acall to
PtAccHandleCreate or PtAccActivate that
identifies the variable whose value to set.
IpszValue A far pointer to athe new string value to set into the
InTouch variable. This string must be at most 131
bytesin length. If the new string is longer than 131
characters, it will be truncated to 131.
Return Value Thereturned valueis 1 if successful or 0 if the function failed.
Example if('PtAccWiteM acclD, hPtTag, NewStringvValue)) {

/* Error, acclD or hPtTag invalid */

}

10-54

Chapter 10

PtAccWriteR

Description

Return Value

Comments

Example

int
Pt AccWiteR(ACCI D accl D,

HPT hPt,
float fValue)

PtAccWriteR sets anew vaueinto an InTouch floating point variable.

Parameter Description

acclD Thisisahandle of type ACCID returned by a
previous cal to PtAccl nit.

hPt Thisisthe Point Handle created by acall to

PtAccHandleCreate or PtAccActivate that
identifies the variable whose value to set.

fValue Thisisthe new |EEE 32-bit floating point value to
be set into the InTouch variable.

Thereturned valueis 1 if successful or O if the function failed.

If the type of the variable (hPt) being written is other than real, it will be converted
to the appropriate value as follows:

Discrete If f'Valueis 0.0, O iswritten to the InTouch variable. Otherwise 1 is
written.

Integer If fValueis greater than the maximum 32-bit signed integer value
(2,147,483,647) the InTouch variable will be set to the maximum. If
fValueis less than the minimum 32-bit signed integer value (-
2,147,483,648) the InTouch variable will be set to the minimum.
Otherwise, fValue is converted to a 32-bit signed integer.

String Thisisan error condition, no write takes place.

if('PtAccWiteR(acclD, hPtTag, Newrl oatingPointValue)) {
/* Error, acclD or hPtTag invalid */
}

111

CHAPTER 11

ITEdIt.OCX

ITEdit isan OLE control specifically designed to access InTouch (6.0 or greater)
database from any OLE container that provides support for OLE controls. It can be
configured to respond to changes in InTouch tagname values in addition to changes
in InTouch run status. Some features are;

e |TEdit provides an interface, via OLE Automation, that enables the user to
programmatically alter its functionality

e |TEdit provides a property sheet for configuration purposes

e |TEditisareplacement for the VBIT custom control for Visual Basic within
the 32 bit environment

e |TEdit functionality is provided viathe newly created class Cldea, whichisa
C++ wrapper around the functionality provided within PTACC DLL. It allows
the user to access these features without having to learn the intricacies of
PTACC.

Contents

s |TEdit Overview

m Registering ITEdit.OCX
m Installing ITEdit.OCX

m Custom Properties

m Events

m Error Dialog Box

11-2

Chapter 11

ITEdIt Overview

ITEdit isan OLE control specifically designed to access the InTouch database from
any OLE container that provides support for OLE controls. It can be configured to
respond to changes in InTouch tagname values and InTouch run status. I TEdit
provides an interface, via OLE automation, that enables you to programmatically
alter its functionality. In addition, ITEdit provides a property sheet for configuration
purposes. I TEdit is areplacement for the VBIT custom control for Visual Basic
within the 32 bit environment.

ITEdit is asubclassed edit control and therefore inherits all properties of this type of
control. ITEdit can be configured to reflect the value of any valid InTouch tagname.
I TEdit displays the current value of the tagname and uses this information to change
the tag's value. When the control has focus, all updates are suspended. Y ou can now
change the value of the tagname. The new value is written to the tagname when
focusislost or when Enter is pressed. Updates to the tag's value are reflected in the
control only after it haslost focus.

There are many ways to display the value of atagname within ITEdit. ITEdit can be
configured to display different strings for different values of a"Discrete” tagname.
For tagnames of numeric types, you can use the familiar formatting capabilities of
InTouch to achieve desired output. For tagnames that are of type "Message', the
value displayed is independent of the format string specified.

Registering ITEdit.OCX

To register ITEdit control you must run the registration utility REGSVR32.EXE.
The command lineis "REGSVR32 path\ITEDIT.OCX" (where path is the fully
qualified path to ITEDIT.OCX) and is entered in the directory where the control is
located.

The registration process results in information about the control being placed into
the system registry. ITEdit is automatically registered once it isinstalled. Once
registered, the control can be used by any application. However, ITEdit must be re-
registered anytime you change its location or copy it to a different computer.

» To register ITEdit:

1. Onthe Windows Taskbar, click Start and then, click Run. The Run dialog box
will appear.

2. Inthe Open box, type REGSVR32.EXE.

3. Typethe path where ITEdit.OCX islocated including the file name
ITEDIT.OCX.

4. Click OK.

ITEdit.OCX 11-3

Installin

Configuri

g ITEdit.OCX

Install ITEdit.OCX into your development environment as you would with any new
control. The icon appears in your application.

ng ITEdit.OCX

The ITEdit Control Properties dialog box is used to configure ITEdit.OCX. The
dialog box is accessed via the Properties menu item on the Context menu. Right-
click on the control to display the ITEdit Control context menu, then select the
Propertiesitem to open the dialog box. A listing of each field and its description are
asfollows:

— ITEdit Control Properties

General |F|:|nts | Colars |

Tag Name: ITagD Tag Browser...

~Status
InTouch

. Running Tag Twpe: Discrete About

-Cutput Fo

Farmat;

Cin k=g

rmat/hessages

LR R

COn Off hd=g: | Off

-Activation

O Activated - No Update ' Inactive

rMode

@® iactivated - Auto pdate (Post) O Inactive - Wirite Immediately

O Activated - Auto Update (Send)

CIE Cancel Applhy

General Tab

The General Tab is used to configure custom properties of the ITEdit control.
Fonts and Color stabs are common property sheets provided by Microsoft. They
are used to configure stock properties and are utilized by many other OLE Controls.

Field Description

Tagname Enter the tagname associated with the control in this
field.

Tag Browser Click Tag Browser to select atagname. All

tagnames in the Tagname Data Dictionary are
shown.

11-4

Chapter 11

Field

Description

Status

Output For mat/M essages

Activation Mode

Displays the status of InTouch and the tagname type
associated with the control.

InTouch: Running or Not Running.
Tag Type: Discrete, Real, Integer, or Message.

Contains three fields that configure the format for
thetag's value.

Format Used to define the output format for
numeric valuesin atext field. It
allows for other tests to be used
around the actual format
specification. For example: Welcome
InTouch yields Welcome 3.2
InTouch.

On Msg: On - If you defined the tagname as a
discrete, when the tagname'svalue is
equal to 1, any message you enter
here will be displayed in the dlarm
window's vaue/limit field.

Off Msg: Off - If you defined the tagname as a
discrete, when the tagname'svalue is
equal to 0, any message you enter
here will be displayed in the dlarm
window's vaue/limit field.

Determines the interaction between the tagname and
the control. Select on the appropriate option to
configure the tag's activation property as follows:

Mode 0 Inactive-Write Immediately
Mode 1 Inactive
Mode 2 Activated-No update

Mode 3 Activated-Auto Update (Post)
Mode 4 Activated-Auto Update (Send)

For more information, refer to | TActivationMode
Property.

ITEdit.OCX 11-5

ITEdit Properties

Thefollowing isalist of I TEdit stock and custom properties.

Stock Properties

Custom Properties

Appearance
BackColor
BorderStyle
Enabled
Font
ForeColor

Stock Properties

Stock Property

ITActivationMode
ITDatalsValid

I TFormat
ITOffMessage
ITOnMessage
ITRunning
ITTagName
ITTagType
ITVaue
ITVaueQuality

Description

Appearance

BackColor

BorderStyle

Enabled

Font

ForeColor

Determines if the control isflat or 3D. Use (0) zero
for flat and (1) one for 3D.

Specifies the color of theinterior of the control (in
RGB values).

Specifiesif the control is drawn with or without a
border. Use (0) zero for no border and (1) onefor a
border.

Specifiesif the control can receive focus. Use (0)
zero for disabled and (1) one for enabled.

Specifies the current font for the control. An
OLEFONT structureis required to utilize this
property.

Specifies the color for the display of the text and
graphicsin the control (in RGB values).

11-6

Chapter 11

Custom Properties

This section describes I TEdit custom properties.

ITActivationMode Property

Description

Example

Windows NT

A read/write property that defines the mode of displayed tagname associated with
the control. Setting this property determines the interaction between the tagname

and the contral. Interaction can range from none to the tagname being activated and
notification of changes being received.

TagMode = I TEditCirl .| TActi vati onMbde
ITEditCtrl. | TActivati onMode = "4"

Valid Activation Modes are:
Mode

Mode Description

0

I nactive. In this mode, no values will be read from
or written to the WindowViewer application.
Internally, no tag handleis created within the
control for the assigned tag. Thisis agreat mode to
switch your control to when it will beidlein the
Visual Basic application. Thiswill help reduce the
amount of overhead between your Visual Basic
application and WindowViewer.

Inactive: Write Immediately. A value may be
written to the tagname without waiting for the setup
period for 1/0O Server based tagnames.

In this mode, values may be written, but no values
may be read from the WindowViewer application.
Internally, no tag handleisinitialy created;
however, when awriteis performed atag handleis
created, activated, the value is written, and then the
tag handle is deactivated and deleted. Thisaso
helps reduce the amount of overhead between your
Visual Basic application and WindowViewer. This
mode is perfect for controls that will only perform
writes to tags but no reads.

ITEdit.OCX 11-7

Mode

Mode Description

Activated, No Update. Updates to the tag's value
are not received by the control. Thetag'svaueis
updated when an ITVaue property is being
retrieved or set.

In this mode, values may be read from or written to
the WindowViewer application. Internaly, the tag
handleis created initialy, then the handle is
activated and will stay that way aslong as the
contral isin thismode. This mode requires alittle
more overhead since the tag handles are aways
active. This means that even your WindowViewer
application has the tags active in its database. This
mode is good for tags that must remain active so
reads and writes can be performed "on the fly;"
however, most of the time switching between this
mode and mode O (zero) is your best bet. It will help
cut down on the overhead induced by keeping tag
handles active.

Activated Auto Update: Post. The value of
information displayed within the control is updated
whenever a PTACC notification messageis
received. The notifications are achieved by using
"PostMessage”.

In this mode, values may be written at any time to
WindowViewer, and when the value changesin
WindowViewer, it will automatically be reflected in
the control. Internaly, the tag handleis created and
activated with the automatic notification method
using the PostM essage Windows API. Thisisvery
handy for controls that will monitor things, like
heartbeats, and for controls where you're waiting for
achange in the value from WindowViewer to
perform some action within your Visual Basic
application. This mode requires more overhead than
the previous activation modes and should only be
used when necessary.

Activated Auto Update: Send. The vaue of
information displayed within the control is updated
whenever a PTACC notification messageis
received. The notifications are achieved by using
"SendMessage.

This mode is amost identical to Mode 3, but it uses
the SendM essage Windows API, rather than the
PostMessage API. The drawback of thisisthat it
now runs synchronously with WindowViewer rather
than asynchronously. This can be a major drawback
to your Visual Basic application asit may slow it
down considerably, especially if the WindowViewer
application is busy (that is, many scripts, windows,
tags, an so on).

11-8

Chapter 11

Remarks

Example

Many users and devel opers simply drop the ITEdit control onto their Visua Basic
form and then switch to Mode 3 or 4. In some cases this is the best configuration.
However, there are other instances in which thisisn't desirable.

With very large, very busy InTouch applications, care must be taken when selecting
the activation modes. It's important to note that it's acceptable to switch from one
mode to another during runtime to achieve the desired affect. Switching modes
doesn't really add much overhead and could actually reduce overhead in the long
run.

Let's say we have a Visual Basic application with four instances of the I TEdit
ActiveX control in it. Each of them will be used for a different purpose while
communicating with a WindowViewer application. The following is a description of
what the controls will do:

e Controll - Used to monitor a heartbeat tag

e Control2 - Used to monitor WindowViewer for a specific event

e Control3 - Used to loop through alist of tags and write values to them

e Control4 - Used to loop through alist of tags and read values from them

The mode for Controll should be set to 3. We need to have WindowViewer notify
us every time the heart beat changes so we don't have to ask WindowViewer for a
new value every second or so.

For Control2, we should also set the mode to 3 whenever we need to monitor
WindowViewer for the event. There may be times when we don't need to monitor
the WindowViewer application for the change in this tag, so we would set the mode
to 0 (zero) during those periods to cut down on overhead.

For Control3, we're going to loop through alist of tags and write to them. In this
case, we'll never perform any reads so we'll set the mode to 1. Thiswill only create
and activate tag handles around the write, but at no other time, adding to the
efficiency of the application.

At various times well be looping through alist of tags and reading from them with
Control4. During the read times, we'll set the mode to 2. There's no point in having
WindowViewer send notification messages when the tag val ue changes since welll
be reading it with the ITVaue property (and looping through several tagsin the first
place). Therefore, Modes 3 and 4 would be pointless and would add too much
overhead to the application. During the times we're not reading from the tags, we
should set the mode to O (zero) to further reduce overhead.

So, when should Mode 4 be used? First, you should understand the difference
between the APIs that are used with Modes 3 and 4. When the PostM essage
Windows API is used with Mode 3, an application will send a message to another
application, continue its processing, and assume the application that is the recipient
of the message did in fact receive the message. On the other hand, when the
SendM essage Windows API is used with Mode 4, the sending application will
actually wait for the receiving application to acknowledge receiving the message.
It's important to note that the return value the sender receives only tells the sender
that the intended application received the message, not that it was actually
processed properly.

ITEdit.OCX 11-9

Thus, waiting for the receiving application to acknowledge that it received a
message can cause problems, particularly if the recipient is busy when the message
issent. Thiswill cause the sender to hang until areturn valueis sent by the recipient
application.

There may be some cases when a developer may decide to use the SendMessage
approach (Mode 4) because it better suits their needs and they will choose it over
Mode 3. Regardless of which mode you choose, remember that it will always help
your Visual Basic and WindowViewer applications to run better if you can "turn
off" the automatic notification messaging and set the mode to zero as often as
possible.

ITDatalsValid Property Windows NT

Description

A read only property that determines whether data retrieved viathe ITVaue
property isvalid. This property determinesif InTouch isrunning and if the data
point isvalid.

Example ValidData = ITEditCtrl .| TDatal sValid
ITFormat Property Windows NT
Description A read/write property that defines the format of displayed value of the tagname.
Y ou can embed any InTouch type format specifiers within thisfield.
Example TagFormat = ITEditCrl. | TTagFor mat
ITEditCrl. | TTagFormat = "Total count of w dgets is ##. ##"
ITOffMessage Property Windows NT
Description A read/write property that defines the value displayed for a Discrete tagname when
the valueis FALSE. Thiswill override any format string specified.
Example TagOf f MessageString = ITEditCirl .| TO f Message
ITEditCrl. | TO f Message = "Fal se”
ITOnMessage Property Windows NT
Description A read/write property that defines the value displayed for a Discrete tagname when
the valueis TRUE. Thiswill override any format string specified.
Example TagOnMessageString = I TEditCirl. | TOnMessage
ITEditCtrl. | TOnMessage = "True"
ITRunning Property Windows NT
Description Checks status of InTouch. If InTouch is running, value True is returned, else False.

Example

Read-only at runtime. Not available at design time.
I nTouchRunning = ITEditCtrl. | TRunni ng

11-10 Chapter 11

ITTagName Property Windows NT
Description Defines name of the InTouch tagname I TEdit control is attached to.
Example ITEditCrl .| TTagNane = "Reactor Tagl"

TagString = ITEditCtrl. | TTagNane

ITTagType Property Windows NT

Description Returns type code of InTouch tagname which is attached to I TEdit control. Read
only at runtime. Not available at design time.

Example TagType = ITEditCtrl.| TTagType
Return values 1 = discrete tagname
2 = integer tagname
3 = rea number tagname
4 = message tagname
ITValue Property Windows NT
Description A read/write property used to either get or set tagname values associated with the

control. The type of parameters needed to get or set the value varies depending on
the tagname type. This is the default property for this control. Setting the value
through this property results in atagname database write. Retrieving the value
through this property results in a database read.

Example ITEditCtrl.1TValue = 78

ITEditCrl = 89

Count = ITEditCtrl.ITVal ue

Count = ITEditCtrl
ITValueQuality Property Windows NT
Description A read-only property that contains the InTouch tag data quality value. The data type

isalong integer (32-bit). Descriptions of InTouch quality values can be found in the
Chapter 5, "Protocols,” in your FactorySuite System Administrator's Guide.

Example For an example using this property, see "Using ITNotifyValue and
ITNotifyQuality" later in this chapter.

ITEdit.OCX 11-11

Events

This section describes | TEdit events.

ITNotifyValue Event Windows NT
Description Fires when the value of a particular InTouch tag changes or is initialized.
For more information, see "Using ITNotifyVaue and ITNotifyQuality" later in this
section.
ITNotifyQuality Event Windows NT
Description Fires when the data quality of a particular InTouch tag changes or isinitialized.

For more information, see "Using I TNotifyVaue and ITNotifyQuality" later in this
section.

Using ITNotifyValue and ITNotifyQuality

If both value and quality for atag changes, the events will be triggered in the
following order: 1) ITNotifyValue, 2) I TNotifyQuality, and finaly 3) I TNotify.

ThelTValue and I TValueQuality properties are updated prior to the triggering of
these events.

The following programming example illustrates how to use the | TNotifyQuality
and I TNotifyValue events.

Dim M nTag, MaxTag As | nteger
Private Sub I TEdit1_ | TNotify()

Rem Thi s function can be used for backward conpatibility
End Sub

Private Sub I TEdit1 | TNotifyQuality()
If ITEdit1l.1TValueQuality <> &HCO Then
Rem Val ue Quality not GOCD
| TEdi t 1. Enabl ed = Fal se

If (ITEditl.1TValueQuality = &6) O
(I TEdit1.1TVal ueQuality = &H55)

Cont i nued

11-12 Chapter 11

Then

Rem Val ue Quality is CLAMPED H GH or CLAMPED LOW
Label 1. Capti on = "TagNanme val ue nust be changed"

El se
Rem Ot her bad Value Quality
Label 1. Caption = ""

End If

El se

Rem Val ue Quality is GOOD
I TEdi t 1. Enabl ed = True
End |f

End Sub
Private Sub I TEdit1_ | TNoti fyVal ue()

If ITEdit1.1TVal ueQuality = &HCO Then
Rem Val ue Quality is GOOD
If ITEdit1.1TVal ue > MaxTag Then
MaxTag = | TEdit 1.1 TVal ue
End If

If ITEdit1l.1TValue < M nTag Then
M nTag = | TEdit 1.1 TVal ue
End If

End I f

End Sub

Error Dialog Box

Displays when ITEdit.OCX is used and WindowViewer is not running.

ITEdit Exror]|

& windowhdiewer is not running

12-1

CHAPTER 12

Tag Access

This chapter provides instructions and documentation for using the Wonderware
Tag Access ActiveX objects for InTouch. The Tag Access objects consist of a
DataChange ActiveX control and a TagLink ActiveX object. The TagBrowser
ActiveX control isalso installed. These components provide devel opers using
Visual Basic's rapid application development (RAD) tools with the ability to
quickly deploy applications that link to the InTouch real-time database. Because
they utilize standard ActiveX technologies, these components are also useful in any
of the Microsoft Office applications as they can be used from within Visua Basic
for Applications (VBA) to expose an InTouch tag database object model.

Contents

Tag Access ActiveX Objects for InTouch

Requirements

Deployment Information

DataChange ActiveX Control

TagLink Object

Sample Applications

Combining the DataChange Control and TagLink Object: An Example
TagBrowser ActiveX Control

12-2 Chapter 12

Tag Access ActiveX Objects for
InTouch

The Tag Access ActiveX objects can be used to develop extensionsto InTouch in a
variety of ways:

e They can be used to devel op standal one applications that integrate with
InTouch, such as custom data loggers, setpoint downloading,
statistical/advanced numerical analysis, custom InTrack clients, and more.

e They can be used to create ActiveX serversthat can be called from within the
InTouch scripting environment, allowing Visual Basic to be used for the bulk
of application scripting, leveraging the speed, functiondlity, and extensibility of
Visual Basic.

e These components can be embedded into other ActiveX controls, enabling
them to be used in the creation of custom ActiveX controls such as specid
types of animations, charts, or user interface objects that can be used in
InTouch or Visual Basic and are bound to datain the InTouch tagname
dictionary.

The Tag Access ActiveX objects also allow "encapsulation” of businesslogic or
process expertise in high-performance compiled objects that cannot be inadvertently
changed or "borrowed" by others. Updates to the business logic can be deployed
without requiring modifications to the InTouch application. Thisis an extremely
powerful capability to virtually any type of FactorySuited user. OEMs can protect
their proprietary value-added to the FactorySuite, systems integrators can develop
vertical-industry application components that they can reusein their projects, and
end users can develop "standard objects' that can be deployed throughout their
plant or enterprise.

The TagLink object provides access to al relevant dot fields of an InTouch tag,
including both read and write access where appropriate, and the DataChange
ActiveX control provides a means to monitor one or more InTouch tags and to
receive notification whenever the value, alarm state, or acknowledge state changes.
The TagBrowser ActiveX control provides a means to browse the tagname database
for any InTouch application, remote or local. Extensive capabilities to filter and
control the appearance of the browser are provided.

A number of sample applications have been provided that allow you to see "real-
world examples' of how these components can be applied to implement innovative
solutions to your manufacturing challenges.

For more information, see "Sample Applications' later in this chapter.

Tag Access 12-3

Requirements

Requirements for using the Tag Access objects are as follows:

e Inorder to use these controls with Visua Basic, you must be using Visual
Basic 6.0 with FactorySuite 2000, Version 7.1 (or later).

e InTouch 7.1 or later must be installed, and an InTouch runtime licenseis
required at each node that will be using the Tag Access ActiveX objects. We
strongly suggest installing all applicable Windows NT and FactorySuite
Service Packs.

e Tousethe ActiveX objects with Microsoft Office and Microsoft Visual Basic,
it is essential that Office Service Release 2 or later be installed. Office
Service Release 2 fixes a number of critical bugsin VBA, particularly
when using VBA within Microsoft Excel.

Note This release does not support remote referencing of InTouch data using
ACCESSNAME:TagName.Field syntax.

12-4 Chapter 12

Deployment Information

After building your applications on your Visual Basic development compulter, it is
strongly suggested that you develop a setup/installation program for deploying your
application/component on other computers. We have had good experiences with
InstallShield and Wise Installation. Be sure to install the following filesin your
application as needed:

Installation Files

InTouchCOM.DLL (for the TagLink and DataChange objects)
LHTagBrowser.OCX (for the TagBrowser ActiveX control)
Registration

Both files are self-registering. Prior to registering InTouchCOM.DLL, be certain
that the InTouch installation directory isin the PATH environment variable
(typically C:\Program Files\FactorySuite\InTouch). Thisis critical for accessing
certain InTouch DLLsthat are used by the InTouchCOM.DLL component.

Dependencies

e Bothfilesreguirethe MFC DLL (MFC42.DLL) and the Microsoft C Runtime
library (MSVCRT.DLL).

e LHTagBrowser.OCX also requires the Visual Basic Runtime
(MSVBVM50.DLL) and the Common Controls component
(COMCTL32.0CX).

e InTouchCOM.DLL requiresthat InTouch 7.0 or newer must be installed and an
InTouch runtime license is required at each node that will be using these
ActiveX controls and objects. We strongly suggest installing all applicable
Windows NT and FactorySuite service packs.

Tag Access 12-5

DataChange ActiveX Control

The DataChange ActiveX control is extremely useful for implementing "event-
based" rather than "polling-based" applications that will need to integrate with the
InTouch real-time tag database. This ActiveX control allows the developer to
monitor the value, alarm status, and acknowledge status of any InTouch tag and to
receive ActiveX events whenever any of these values change.

Each DataChange ActiveX control can monitor up to 512 InTouch tags. The
ActiveX control maintains an "active watch list" of tags that are of interest to the
container application. The AddWatch and RemoveWatch methods are used to add
or remove tags from thislist. In generd, it is more efficient to have a single instance
of the DataChange ActiveX control monitor multiple tags than to create multiple
instances of the ActiveX control on aform.

The application devel oper has control over which events are generated for each
monitored tag. Thisis determined by passing the appropriate flags when the
AddWatch method is called to add atagname to the active list. Separate flags are
provided to enable/disable the ValueChanged, AlarmStatusChanged, and
AckStatusChanged events.

Another useful feature is the ability to associate a user-determined value (a Variant
value) with each entry in the active tag list. This parameter is passed (along with the
tagnhame and the changed value) to the event handler routine for each of the three
types of events, providing another means besides the tagname for associating the
event with some code or other item in the container application. A common example
might be a color chart application monitoring an array of tags, such astheten
temperature readings in a baking oven, and associating a value identifying the oven
heating zone with each monitoring point. When any of the zone temperatures
changes or changes alarm/ack state, the container application can simply use the
UserData parameters as an index to quickly redraw the display.

Since the UserData parameter isa"Variant" datatype, it can also be used to store
references to other objects, such as areference to a TagLink object that corresponds
to the same tag. In this manner, whenever an event is received, you could easily
access any of the tag’s dot fields at the same time you are handling the event.

12-6

Chapter 12

Events

The DataChange ActiveX control can generate up to three events for each tag that it
monitors. These events correspond to the most commonly accessed attributes of an
InTouch tag, those being its value, its dlarm status, and its acknowledge status.
Whenever the value of any of these attributes changes for atag being monitored, the
associated event will be fired.

Note Whenever atag is added to the active "watch list" using the AddWatch
method, a set of Boolean flags are used to indicate which events are of interest to
the application, allowing specific events to be monitored or suppressed on a"per
tag" basis.

AckStatusChanged

This event isfired whenever the .Ack field for atag being monitored changes state.
The event handler format (shown as it might appear in Visual Basic) is:

Private Sub Dat aChangel_ AckSt at usChanged(ByVal TagNane As
String, ByVal AckStatus As Long, ByVal UserData As Long)

Debug. Print "Ack Changed For " + TagName + " To " +
For mat $(Ack St at us)

End Sub

The UserData parameter is the same user-supplied value that was associated with
the tag when the AddWatch method was called and can be used as an alternative to
the taghame as a means to determine which tag has changed.

AlarmStatusChanged

This event isfired whenever the .Alarm field for atag being monitored changes
state. Note that an event will not be fired when the tag changes from one alarm state
to another, such as HI to HIHI, but only from Normal to Alarm or Alarm to Normal.
The event handler format (shown as it might appear in Visual Basic) is:

Private Sub Dat aChangel_ Al ar nf5t at usChanged(ByVal TagNane As
String, ByVal AlarntStatus As Long, ByVal UserData As Long)

Debug. Print "Al arm Changed For " + TagNanme + " To " +
For mat $(Al ar nSt at us)

End Sub
The UserData parameter is the same user-supplied value that was associated with

the tag when the AddWatch method was called and can be used as an alternative to
the taghame as a means to determine which tag has changed.

Tag Access 12-7

Methods

ValueChanged

This event isfired whenever the value of atag being monitored changes. Note that
the data type for the valueis a VARIANT, since the actual datatypeis dependent
on the InTouch tag type. The event handler format (shown as it might appear in
Visual Basic) is:

Private Sub Dat aChangel_Val ueChanged(ByVal TagName As String,
ByVal Value As Variant, ByVal UserData As Long)

Debug. Print "Val ue Changed For " + TagNane + " To " +
For mat $(vDat a)

End Sub
The corresponding data types for each InTouch tag type are:

InTouch Tag Type VARIANT data type
Discrete Boolean (VT_BOOL)
Integer Long Integer (VT _I14)
Real Float (VT_R4)
Message String (VT_BSTR)

The UserData parameter is the same user-supplied value that was associated with
the tag when the AddWatch method was called and can be used as an alternative to
the taghame as a means to determine which tag has changed.

Each DataChange ActiveX control can monitor up to 512 InTouch tags. The
ActiveX control maintains an "active watch list" of tags that are of interest to the
container application. The AddwWatch and RemoveW atch methods are used to add
or remove tags from this|list.

Note Each of the methods can potentially raise ActiveX errorsif invalid tagnames
are passed as parameters. As such, normal Visual Basic (or other) client error
handling can be used to trap and handle these errorsin the calling application.

AddWatch

This method is used to add atag to the "active watch list" for a specific instance of
the DataChange control. If the tagname is not valid, the maximum number of active
tags is exceeded, or if communications cannot be established to InTouch, an
ActiveX error will be raised. Conversely, the RemoveWatch method removes atag
from the active watch list. The syntax for the method, shown in Visual Basic form,
isasfollows:

Cal | Dat aChangeControl . AddWat ch(ByVal TagName As String, ByVval
Bool ean bNotifyVal ue, ByVal Bool ean bNotifyAl arms, ByVal
Bool ean bNotifyAcks, ByVal Variant UserData)

12-8

Chapter 12

Return Type

Example

Note that the Boolean and Long are similar from an ActiveX perspective, thus the
type library will indicate a"Long" datatype for BOOL parameters.

Parameter Description

TagName A string value containing the InTouch tagname to
be monitored

bNotifyVaue A Boolean flag indicating whether value change

events should be generated for thistag

bNotifyAlarms A Boolean flag indicating whether alarm status
change events should be generated for this tag

bNotifyAcks A Boolean flag indicating whether ack status change
events should be generated for thistag

UserData A Variant value that represents a user-supplied
value which will be sent with any notification events

This method does not return a value.

The following code fragment demonstrates this method. In this example, we add ten
tags to the active watch list and ask the control to notify usif either the value, alarm,
or ack state changes (all three event flag parameters are "true"). We also use the
UserData parameter to store the index into an array, which we could use later in the
event handler. Of course, this value could be simply set to zero as well.

Const NUMTAGS = 10
Dim 1 As Integer

Use "inline" error handling
On Error Resune Next

For 1=1 to NUMTAGS

Cal | Dat aChangel. AddWat ch(" Anal og" +For nat $(1), true,
true,true, |)

If Err.Nunber <> 0 Then
MsgBox Err. Description
End If

Next

For information and example code on how the UserData parameter can be used to
enhance the power of the DataChange ActiveX control and to integrate the control
with the TagLink object, see "DataChange ActiveX Control."

Tag Access 12-9

RemoveWatch

This method is used to remove tag from the "active watch list" for a specific
instance of the DataChange control. If the tagnameis not found in the active list, an
ActiveX error will be raised (and can be handled by the caller). Conversely, the
AddWatch method adds a tag to the active watch list. The syntax for the method,
shown in Visua Basic form, is as follows:

Cal | Dat aChangeControl . RenoveVWat ch(ByVal TagName As String)

Parameter Description
TagName A string value containing the InTouch tagname to
be removed from the active list
Return Type This method does not return avalue.
Example The following code demonstrates how this method might be used in an application.

Trap the possible error if the tagnane is not valid
On Error Resune Next
Cal | Dat aChangel. RenoveWat ch(" MyTagNanme")

If Err.Nunber <> 0 Then
MsgBox "Tag Was Not Being Monitored" + Err.Description
End |f

Trappable Errors

The following trappable errors are generated by the DataChange ActiveX control:

Value Description

8193 "Connection To InTouch Failed"

8194 "Invalid Tag Name"

8200 "Exceeded maximum number of tags that can be active for a

single control (512)"
8201 "Specified tagname was not in the active list"

12-10

Chapter 12

TagLink Object

The TagLink object provides an ActiveX/COM aobject model wrapper around the
InTouch tag database, allowing full access to the various attributes and dot fields of
an InTouch tag using properties of the TagLink object. Many of these properties can
be written to in addition to read, allowing application to perform advanced tasks as
changing process values, adjusting alarm limits, enabling/disabling alarms,
acknowledging alarms, and many other functions.

Users with special data handling needs, such as event-based collection of "record-
oriented" datato arelational database, recipe handling, specialized reporting,
complex algorithms, and so on can leverage the power and speed of Visual Basic
while maintaining live connections to InTouch data and freeing themselves from the
limitations of the InTouch scripting language for more advanced applications.

InTrack users who have chosen to use Visual Basic as their GUI development
environment can leverage the power of InTouch for communicating to shop floor
data, while bypassing the drawbacks of DDE (single dot field at-a-time access, extra
configuration, etc). Additionally, with the ActiveX automation support in the
InTouch scripting language provided with InTrack, devel opers can perform virtually
all of their scripting in a higher-level language such as Visual Basic, compile these
scripts as ActiveX automation servers, and call them from InTouch.

There are double benefits to InTrack users, in that they get not only the advantages
of the Visual Basic programming language (structures, arrays, rich set of functions,
and so on), but also higher InTrack transaction throughput, since Visual Basic
performs "early binding" against the InTrack engine versus the "late binding" that
InTouch’s scripting performs.

OEMs who have specialized application requirements that are cumbersome to
implement inside the InTouch GUI environment are that are awkward and time-
consuming to implement using InTouch scripting can aso exploit the Tag Access
objects to maximize the value of their offering integrated with the FactorySuite, and
can hide and embed their own proprietary content without fear of it being copied by
a competitor, which isadistinct possibility if standard scripting is used.

When developing ActiveX controls that will be used within InTouch, one advantage
of using the TagLink object approach versus the property binding provided by
InTouch isthat tag associations can be changed "on the fly" by the application and
that access to multiple dot fields can be accomplished with a single property
assignment. (InTouch's property binding requires that each dot field be bound to a

separate property.)

Tag Access 12-11

A good example would be creating a PID faceplate ActiveX control, where it would
be desirable to access 15-20 dot fields in the object, such as engineering units and
scaling information, alarm ranges, alarm states, and so on. Using the Tag Access
objects, asingle "Loopl D" property could be used externally and bound to an
InTouch message tag, and internally a TagLink object could be used to access all of
the necessary dot fields. Conversely, using the InTouch property binding technique,
20 separate properties would need to be exposed by the ActiveX control, and
tedious configuration performed to map each dot field to its associated property.

Another powerful benefit of the TagLink object is the ability to integrate it with
Microsoft’s Visua Basic for Applications (VBA) environment, which is built into
the Microsoft Office suite of applications and other third-party products. Using the
Tag Access objects alows a high-performance means for linking products such as
Microsoft Excel or Word to the InTouch tag database for advanced reporting,
charting, or numerical analysis.

Properties

The TagLink object exposes a number of properties that correspond to the many dot
fields or attributes that comprise an InTouch tag. Many of these properties are
write-able as well as readable. Some properties are useful only for specific InTouch
tag types (for example, the HiLimit property is meaningless for a discrete tag).

The TagName property is the means by which a TagLink object is associated with
an InTouch tag, the TagType property indicates the data type of the tag, and the
Valid property is used to determine whether a TagLink object is currently connected
to an InTouch tag.

TagName

The TagName property is the most important of the properties, asit is used to
associate an instance of a TagLink object with a specific InTouch tag. Setting the
TagName property causes the ActiveX server to attempt to connect to InTouch and
establish alink to the specified tagname.

If the TagLink object was already active and linked to another InTouch tag, that link
will be disconnected first. To "disconnect” a TagLink object without assigning a
new tagname, simply assign a null string (not a null pointer) to the TagName
property. The ActiveX server will automatically disconnect the tag link to InTouch
when the TagLink object falls out of scope (for example, a TagLink object created
and used within a Visual Basic subroutine).

If the tagname is not valid, or if communications cannot be established to InTouch,
atrappable ActiveX error will be raised which can be handled by the container
application.

Note The tagname string can be expressed as a remote reference, using the same
syntax as when using remote references in InTouch animation links.

12-12

Chapter 12

Setting the TagName Property: Example 1

The following example demonstrates how to set the TagName property in Visua
Basic. This example also demonstrates one technique for trapping errors, such as
invalid tagnames or InTouch not being active by using a specific error hander:

Decl are a TagLi nk obj ect
Dim MyTag As TagLi nk
Create the TagLi nk obj ect
Set MyTag = new TagLi nk
Trap any errors by junping to our error handling code
On Error GoTo CQurErrorHandl er
Attach to the tagnane "Anal ogl"
MyTag. TagNane = " Anal ogl”

MsgBox "The Val ue of "+MyTag. TagName + " is
" +For mat $(MyTag. Val ue, " 0. 00")

Attach to the tagnane "Anal og2"
MyTag. TagNane = " Anal og2"

MsgBox "The Val ue of "+MyTag. TagName + " is
" +For mat $(MyTag. Val ue, " 0. 00")

Deactivate the |ink
M/ Tag. TagName = ""

Qur Error Handl er:
MsgBox Err. Description

Setting the TagName Property: Example 2

You can create arrays of tag links to simulate array tag types that reads the values
from ten analog tags, named "Analogl" to "Analogl0" as shown in the following
example. This example demonstrates an alternative error handling mechanism,
which looks at the error code after each call that could potentially generate a
trappable error.

Const NUMTAGS = 10

Di m Anal ogTags As TagLi nk(NUMTAGS)

Dim1 As |nteger

Use "inline" error handling

On Error Resune Next

For =1 to NUMIAGS
Set Anal ogTags(l) = New TagLi nk
Anal ogTags(|). TagNanme = "Anal og" +For mat $(1)
If Err.Nunber <> 0 Then

MsgBox Err. Description
End If

Tag Access 12-13

Next

Now wite the values to the debug out put
For 1=1 to NUMTAGS

If Anal ogTags(l).Valid Then

Debug. Pri nt Anal ogTags(1). Val ue

End If
Next

TagType

The TagType property is an integer value that indicates the data type for the value
of the tag specified . An enumeration is provided in the type library for the TagLink
object that can be used to interpret the TagType property. The following table lists
the possible values:

PT_UNKNOWN
PT_DISCRETE
PT_INTEGER
PT_REAL
PT_MESSAGE
PT_GROUP 7

In addition to describing the data type for the value of the tag, the tag type also
determines the data type for certain dot fields, such as alarm limits, raw and
engineering unit ranges, and others. The dot field reference table lists which
elements vary depending on the tag data type.

0
1
2
3
4

For more information, see "Dot Field Properties” later in this chapter.

Valid

The Valid property is a Boolean value that indicates whether or not alink was
successfully established with InTouch for the specified tag. It can be checked
anytime after the TagName property has been set.

12-14

Chapter 12

Dot Field

Properties

This section describes some important attributes of the properties that correspond to
the various dot fields supported by InTouch tags. Note that not all tag types support
all of the dot fields. If application attempts to access adot field that is not valid for
the associated tag, atrappable ActiveX error will be raised.

The following table displays the list of supported fields, along with their data type
and whether the property is read only or read/write. Note that the data types of
certain dot fields are dependent on the tag type. Notably, the two types of analog
tags, Integer and Real, use different data types for handling their value, alarm limits,
and other characteristics. For Integer tags, these fields are handled as long integer
values (4 byte), and for Real tags they are handled as float values (4 byte).

Note Refer to the InTouch reference information for detailed descriptions of the
purpose and functionality of each supported dot field. The InTouch documentation
will indicate which dot fields are support for the various tag types. Also, the TagList
object does not support Historical Trend tag dot fields or PenID dot fields.

Dot Field Name Data Type Access Mode
Ack Boolean R/W
Alarm Boolean R
AlarmDevDeadband Float R/W
AlarmEnabled Boolean R/W
AlarmV alDeadband Variant (depends on tag type) R/W
Comment String R
DevTarget Variant (depends on tag type) R/W
EngUnits String R
HiHiLimit Variant (depends on tag type) R/W
HiHiSet Boolean R
HiHiStatus Boolean R
HiLimit Variant (depends on tag type) R/W
HiSet Boolean R
HiStatus Boolean R
LoLimit Variant (depends on tag type) R/W
LoLoLimit Variant (depends on tag type) R/W
LoLoSet Boolean R
LoLoStatus Boolean R
LoSet Boolean R
LoStatus Boolean R
MajorDevPct Float R/W
MajorDevSet Boolean R

Tag Access 12-15

Dot Field Name Data Type Access Mode
MagjorDevStatus Boolean R
MaxEU Variant (depends on tag type) R
MaxRaw Variant (depends on tag type) R
MinEU Variant (depends on tag type) R
MinorDevPct Float R/W
MinorDevSet Boolean R
MinorDevStatus Boolean R
MinRaw Variant (depends on tag type) R
Normal Boolean R
OffMsg String R
OnMsg String R
Quality Long integer R
QualityLimit Long integer R
QualityLimitString String R
QuaityStatus Long integer R
QualityStatusString String R
QualitySubstatus Long integer R
QualitySubstatusString String R
RawVaue Variant (depends on tag type) R
Reference String R/W
ReferenceCompl ete Boolean R
ROCPct Long Integer R/W
ROCSet Boolean R
ROCStatus Boolean R
SPCStatus Boolean R
TagType Short Integer R
TimeDate Long integer R
TimeDateString String R
TimeDateTime Float R
TimeDay Long integer R
TimeHour Long integer R

12-16

Chapter 12

Dot Field Name Data Type Access Mode
TimeMinute Long integer R

TimeMonth Long integer R

TimeM Sec Long integer R

TimeSecond Long integer R

TimeTime Long integer R
TimeTimeString String R

TimeY ear Long integer R

Unack Boolean R

Vaue Variant (depends on tag type) R/W

Tag Access 12-17

Trappable Errors

Sample

The following trappable errors are generated by the TagLink object:
Value Description

8193 "Connection To InTouch Failed"

8194 "Invalid Tag Name"

8195 "Invalid Field Name"

8196 "Read Failed"

8197 "Write Failed"

8198 "Wrong Data Type"

8199 "Tag link is not active — cannot access field"

Applications

Note These sample applications have been provided as learning tools only. As
such, they are not extensively documented nor is complete error handling
implemented. These are not supported products, and we regret that we cannot
provide technical assistance on using/modifying these sample applications. Use at
your own risk.

A number of sample applications are installed with the product. The sample
applications provided include:

SAMPLES\TESTAPP

InTouch Application for use with the Visual Basic Demo Applications.
SAMPLES\TAGACCESSVBADEMO

Excel Spreadsheet Accessing InTouch via Visual Basic for Applications (VBA).
SAMPLES\CIRCCHART

Visual Basic ActiveX Control that simulates a Circular Chart Recorder. This control
is not automatically registered upon installation. Y ou will need to either explicitly
register it using REGSVR32 or rebuild the project using Visual Basic.

SAMPLES\LEDTEST

Visual Basic Application Demonstrating Simple Use of TagLink and DataChange
Objects.

SAMPLESWWDEBUG

General-Purpose Visua Basic Application For Interactively Viewing/Manipulating
InTouch Realtime Tag Database Information — Uses TagLink, DataChange, and
LHTagBrowser Objects.

12-18 Chapter 12

Combining the DataChange Control
and TagLink Object: An Example

The following simple example demonstrates how you might combine the two
objects. This code monitors two tags for alarm state changes and displays a detailed
message on each alarm event.

Note Displaying a message box as shown in this example should never be donein a
real application, as your event handlers should do their processing and return as
soon as possible, rather than performing a modal action.

Decl are Two TagLi nk objects
Dim MyTagl As TagLi nk

Dim MyTag2 As TagLi nk

‘ This subroutine sets up the necessary |inks
Sub Set upLi nks

‘ Create the TagLink objects

Set MyTagl = new TagLi nk

Set MyTag2 = new TagLi nk

‘ Trap any errors by junmping to our error handling code
On Error GoTo QurErrorHandl er

‘ Attach to the tagnane "Anal ogl"
MyTagl. TagNane = " Anal ogl"

‘ Attach to the tagnane "Anal og2"
MyTag2. TagNane = " Anal og2"

Pl ace these tags "on watch", ignoring value and ack status
changes

Cal | Dat aChangel. AddWat ch(" Anal ogl", fal se, true, fal se, M\yTagl)
Cal | Dat aChangel. Addwat ch(" Anal og2", fal se, true, fal se, M\yTag2)

Qur Error Handl er:
MsgBox Err. Description
End Sub

conti nued

Tag Access 12-19

Thi s event handl er responds to al arm change events

Private Sub Dat aChangel_Al ar nf5t at usChanged(ByVal TagNane As
String, ByVal AlarntStatus As Long, ByVal UserData As Vari ant)

Dim szAl arnStatus As String
SzAl arnfSt at us = "TagNane "+ TagNane + " Changed To "
I f UserData.Normal Then

szAl arnBtatus = szAl arntStatus + "Nornal"

El se
If UserData. H Hi Status Then
szAlarnStatus = szAlarnStatus + "H H "
End If
If UserData. Hi Status Then
szAl arnStatus = szAlarnStatus + "H "
End If
If UserData.LoStatus Then
szAl arnStatus = szAl arnfStatus + "Lo"
End If
If UserData. LoLoStatus Then
szAl arnStatus = szAl arnStatus + "LoLo"
End If
End If

Tag on the current val ue

SzAl arnStatus = szAlarnStatus + " At A Value O " +
For mat $(User Dat a. Val ue)

Di spl ay a nessage box

MsgBox szAl ar nft at us
End Sub

Note It isrecommended, but not required, that when the DataChange control is
added to a Visual Basic form, the "Visible" property provided by Visual Basic for
this control should be set to "false”, since this control provides no run-time user
interface.

Note It isimportant to note that the AlarmStatusChanged event is generated only
when the .Alarm field of an InTouch tag changes state, such as going from any
alarm condition back to normal, or from normal to any alarm condition. This event
is not generated when the tag changes from one alarm state to another, such as from
HI to HIHI. However, by combining the TagLink object with the DataChange
object's ValueChanged event, full access to any of the dot fields can be achieved,
allowing determination of individual alarm status, as described above.

12-20 Chapter 12

TagBrowser ActiveX Control

Thefollowing are afew tips/suggestions for using the TagBrowser ActiveX control:

e For reference purposes, the actual name (Progl D) of the TagBrowser ActiveX
control is LHTagBrowser.TagDisplay

e Becertain to size the TagBrowser ActiveX control large enough to display all
of the browser components.

e Remember to call the UpdateView method whenever new filter expressions
have been set to update the list of tags.

Properties

The following sections describe the properties of the TagBrowser ActiveX control.

AccessNamekFilter

This property is a String value that, when set to anything other than an empty string
("), will filter the list of tags based on standard pattern matching rules against the
AccessName assigned to the tag. For example, to display all tagsin the
AccessName called "ABPLC99", this property could be set using:

TagDi spl ayl. AccessNameFi | ter = "ABPLC99"
TagDi spl ayl. Updat eVi ew

For more information on how to define filter strings, see "Filter Expressions’ later
in this chapter.

Remember to call the UpdateView method to refresh the display after changing
filter properties.

AlarmGroupFilter

This property is a String value that, when set to anything other than an empty string
("), will filter the list of tags based on standard pattern matching rules against the
AlarmGroup assigned to the tag. For example, to display al tagsin AlarmGroups
that begin the word "Unit" and end with the word "Utilities", this property could be
Set using:

TagDi spl ayl. AlarmGoupFilter = "Unit*Wilities"
TagDi spl ayl. Updat eVi ew

For more information on how to define filter strings, see "Filter Expressions’ |ater
in this chapter.

Remember to call the UpdateView method to refresh the display after changing
filter properties.

Tag Access 12-21

AllowBrowsing

ThisisaBoolean (true/false) property that, when set to true, will allow the user to
double-click on the application path and browse to other InTouch application
directories.

AllowViewChanges

ThisisaBoolean (true/false) property that, when set to true, will allow the user to
click on the Report/List view icons at the lower-left corner of the control. This will
switch the view between a Report view (detailed data displayed in columns) or a
List view (smdl icons only).

The Report view is shown as follows:

T aghame | D' ezcriptian | Type | Alarmlaraup | il
EF 30 ateTime System $Sypstem
F0ay System $System
M $HistoricalLogging Historicallogging System $Sypstem
FHowr Sywsham $System
B $inactivity Timeout InactivityT imeout Sypshem $Supztem
B $lnactivityasaming Inactivib®f arning Sypshem $Suztem
System $Spstem LI
||:|:"awwapps‘\demnapps'\alarmsuite demo 1024:7E58
TheList view is shown as follows:;
FHour e AlarmHiztSelectedT ag B Mooy
B $inactivityTimeout B AlarmHistS electedTime #B Mumbe
B $Inactivitys arning =8l AlarmParetoH ours =l Output
M $LogicRunning B AlarmS ummany5electedGroup B Passw
I I

|u:I:'\wwapps'\demnapps‘\alarmsuite demn 1024x768

AppPath

Thisisa String property used to specify the InTouch application directory from
which the tag browser will lookup tag information. For example:

TagDi spl ayl. AppPath = "D\ WAPPS\ MYAPPLI CATI ON"

You can also use the GetCurrentAppPath method to set this value automatically
based on the last InTouch application that was edited in WindowMaker or run in
WindowViewer on the current computer.

If the AutoRefresh property is enabled, the UpdateView method will automatically
be called each time the application path is changed.

12-22

Chapter 12

AutoRefresh

Thisis aBoolean (true/false) property that determines whether or not the display
will be automatically updated whenever the application path is changed. If the
AutoRefresh property is enabled, the UpdateView method will automatically be
called each time the application path is changed.

HistoricallyLoggedOnly

ThisisaBoolean (true/false) property that, if set to true, will display only tags that
are configured to be historically logged to InTouch's standard historical logging
system (for example, the L og Data option is selected in WindowMaker's tag
editor).

LogEventsOnly

ThisisaBoolean (true/false) property that, if set to true, will display only tags that
are configured to have events logged to InTouch’s alarm system (for example, the
L og Events option is selected in WindowMaker's tag editor).

RetentiveOnly

ThisisaBoolean (true/false) property that, if set to true, will display only tags that
are configured to be retentively stored.

SelectedTag

Thisisa String property corresponding to the currently selected tagname. Y ou can
also cause atagname to be selected programmatically by assigning avalue to this

property.

SelectedTagAccessName

Thisis a String property corresponding to the Access Name for the currently
selected tag.

SelectedTagAlarmGroup

Thisisa String property corresponding to the Alarm Group for the currently
selected tag.

SelectedTagDescription

Thisis a String property corresponding to the Tag Description for the currently
selected tag.

SelectedTagMode

Thisisa String property corresponding to the tag mode for the currently selected
tag.

Tag Access 12-23

SelectedTagType

This property is aread-only integer value that corresponds to the tag type for the
currently selected tag.

For more information, see "Valid Tag Types"' later in this chapter.

ShowAccessNames

ThisisaBoolean (true/false) property that, if set to true, will display the Access
Names for each tag when Report View is active.

ShowAppPath

Thisis aBoolean (true/false) property that, if set to true, will display the currently
selected application path at the bottom of the control.

TagNamekFilter

This property is a String value that, when set to anything other than an empty string
("), will filter the list of tags based on standard pattern matching rules. For
example, to display all tags beginning with the letters " TIC," this property could be
Set using:

TagDi spl ayl. TagNaneFilter = "TIC"

TagDi spl ayl. Updat eVi ew

For more information on how to define filter strings, see "Filter Expressions’ later
in this chapter.

Remember to call the UpdateView method to refresh the display after changing
filter properties.

TagTypeFilter

This property is an integer value that, when set to a non-zero value, will display
only tags matching the specified type. To display all tags, set this property to zero
(0).

For more information, see "Valid Tag Types' later in this chapter.

12-24

Chapter 12

Valid Tag Types

Thefollowing list describes the various constants that correspond to the various
InTouch tag types:

Publ i ¢ Enum enuniragType
tagTypeAll =0
tagTypel ODi scReadOnly = 201
tagTypel ODi sc = 202
tagTypel A nt ReadOnly = 203
tagTypel O nt = 204
t agt ypel OReal ReadOnly = 205
t agt ypel OReal = 206
t agt ypel OMsgReadOnly = 207
t agt ypel Ovsg = 208
t agt ypeMenoryDi sc = 209
tagtypeMenorylnt = 211
t agt ypeMenoryReal = 213
t agt ypeMenoryMsg = 215
tagt ypeAl armGroup = 217
t agt ypeG oupvar = 218
tagt ypeHi st Trend = 222
tagtypeTagl D = 223
tagtypel ndirectDisc = 224
t agt ypel ndi rect Anal og = 225
tagtypel ndirect Msg = 226
End Enum

Tag Access 12-25

Filter Expressions

The general syntax for search expressionsis as follows:

String comparisons are based on a case-insensitive, textual sort order determined by
your system's locale. The pattern-matching features allow you to use wildcard
characters, character lists, or character ranges, in any combination, to match strings.
The following table shows the characters allowed in pattern and what they match:

Characters in pattern Matches in string

? Any single character.

* Zero or more characters.

Any single digit (0-9).

[charlist] Any single character in charlist.
[!charlist] Any single character not in charlist.

A group of one or more characters (charlist) enclosed in brackets ([]) can be used
to match any single character in string and can include almost any character code,
including digits.

Note To match the special characters left bracket ([), question mark (?), number
sign (#), and asterisk (*), enclose them in brackets. The right bracket (]) can't be
used within a group to match itself, but it can be used outside a group as an
individual character.

By using a hyphen (-) to separate the upper and lower bounds of the range, charlist
can specify arange of characters. For example, [A-Z] resultsin amatch if the
corresponding character position in string contains any uppercase lettersin the
range A—Z. Multiple ranges are included within the brackets without delimiters.

Other important rules for pattern matching include the following:

e Anexclamation point (!) at the beginning of charlist meansthat amatchis
made if any character except the charactersin charlist is found in string.

e When used outside brackets, the exclamation point matches itself.

e A hyphen (=) can appear either at the beginning (after an exclamation point if
oneis used) or at the end of charlist to match itself. In any other location, the
hyphen is used to identify arange of characters.

e When arange of charactersis specified, they must appear in ascending sort
order (from lowest to highest). [A-Z] isavalid pattern, but [Z-A] is not.

e The character sequence (] is considered a zero-length string ("").

12-26 Chapter 12

Methods

The following sections describe the methods of the TagBrowser ActiveX control.

GetCurrentAppPath

You can use the GetCurrentAppPath method to set the AppPath property
automatically based on the last InTouch application that was edited in
WindowMaker or run in WindowViewer on the current computer.

UpdateView

Calling the UpdateView method will refresh the display, applying any changesto
the application path or filter properties that have been assigned since the last update.

Events

The following sections describe the events of the TagBrowser ActiveX control.

ApplicationChanged

This event isfired whenever the application path is changed, either
programmatically or viathe user selecting a new application directory.

DbIClick

This event is fired whenever the user double-clicks on the control.

SelectionChanged

This event isfired whenever the user selects a new tag in the control. The selected
tagname is passed as a parameter to this event. The selected tag (and other
properties) are also available viathe SeletedTag, SelectedTagAccessName,
SelectedTagAlarmGroup, SelectedTagType, SelectedTagDescription, and
SelectedTagM ode properties.

Index

Ack, 12-14

Alarm, 12-14
AlarmDevDeadband, 12-14
AlarmEnabled, 12-14
AlarmVaDeadband, 12-14
.Comment, 12-14
DevTarget, 12-14
.EngUnits, 12-14
HiHiLimit, 12-14
HiHiSet, 12-14
.HiHiStatus, 12-14
HiLimit, 12-14

HiSet, 12-14

.HiStatus, 12-14

.LoLimit, 12-14
.LoLoLimit, 12-14
.LoLoSet, 12-14
.LoLoStatus, 12-14
.LoSet, 12-14

.LoStatus, 12-14
.MajorDevPct, 12-14
.MajorDevSet, 12-14
.MajorDevStatus, 12-15
.MaxEU, 12-15

.MaxRaw, 12-15

.MinEU, 12-15
.MinorDevPct, 12-15
.MinorDevSet, 12-15
.MinorDevStatus, 12-15
.MinRaw, 12-15

.Normal, 12-15

.OffMsg, 12-15

.OnMsg, 12-15

.Quality, 12-15
.QualityLimit, 12-15
.QualityLimitString, 12-15
.QualityStatus, 12-15
.QualityStatusString, 12-15
.QualitySubstatus, 12-15

.QualitySubstatusString, 12-15

.RawValue, 12-15
.Reference, 12-15
.ReferenceComplete, 12-15
.ROCPct, 12-15

.ROCSet, 12-15
.ROCStatus, 12-15
.SPCStatus, 12-15
.TagType, 12-15

.TimeDate, 12-15
.TimeDateString, 12-15
.TimeDateTime, 12-15
.TimeDay, 12-15
.TimeHour, 12-15
.TimeMinute, 12-16
.TimeMonth, 12-16
.TimeMSec, 12-16
.TimeSecond, 12-16
.TimeTime, 12-16
.TimeTimeString, 12-16
.TimeYear, 12-16
.Unack, 12-16

.Vaue, 12-16

A

About Property, 11-5, 11-6
Access Name, 3-12
Access Names

Cresting, 3-12, 6-4

Finding, 3-12, 6-2

Unique Names, 3-12, 6-3
AccessName_Find, 3-12, 6-2
AccessName_FindAppl Topic, 3-12, 6-2
AccessName_Getlnfo, 3-12, 6-2
AccessName_GetName, 3-12, 6-3
AccessName_GetUniqueName, 3-12, 6-3
AccessName _New, 3-12, 6-4
AccessName_Setinfo, 3-12, 6-4
AccessName_SetName, 3-12, 6-5
AccessNameFilter Property, 12-20
ACCESSNAMEINFO, 7-2
AckStatusChanged Event, 12-6
AddWatch Method, 12-7
AlarmGroupFilter Property, 12-20
AlarmObj_New, 3-4, 6-6
AlarmStatusChanged Event, 12-6
AllowBrowsing Property, 12-21
AllowViewChanges Property, 12-21
AnlgAlarmLnk_New, 3-7, 6-8
AnlgColorLnk_New, 3-7, 6-11
AnlglnputLnk_New, 3-7, 6-12
AnlgOutputLnk_New, 3-7, 6-13
AnlgTag_Getinfo, 3-12, 6-13
AnlgTag_Setinfo, 3-12, 6-14
ANLGTAGINFO, 7-2
ApplicationChanged Event, 12-26
AppPath Property, 12-21
AutoRefresh Property, 12-22

B

BitmapObj_New, 3-4, 6-14
Bitmaps

-2 Index

Wizard_GetInfo, 4-4
BlinkLnk_New, 3-7, 6-15
ButtonObj_New, 3-4, 6-16

C

C Module, 5-3
WZMAIN.C, 5-3
WZSTUB.C, 5-3
Color Boxes, 6-97
Command Wizards, 4-7
Company Name
WizardLib_Getlnfo, 4-6
Components of aWizard DLL, 2-3
Configurable Wizard
Building, 2-22
Configurable Wizard Diagram, 2-23

Creating Libraries with Multiple Wizards, 5-2

D

Database Functions, 3-11

Database Tag Functions, 3-11
AccessName Find, 3-12
AccessName_FindAppl Topic, 3-12
AccessName_Getlnfo, 3-12
AccessName_GetName, 3-12
AccessName_GetUniqueName, 3-12
AccessName_New, 3-12
AccessName_SetInfo, 3-12
AccessName_SetName, 3-12
AnlgTag_GetInfo, 3-12
AnlgTag_Setinfo, 3-12
DiscTag_GetInfo, 3-12
DiscTag_Setinfo, 3-12
StrTag_Setinfo, 3-12
Tag_FindApplTopicltem, 3-11
Tag_GetAccessinfo, 3-11
Tag_GetGroup, 3-11
Tag_GetlInfo, 3-11
Tag_GetRetentivelnfo, 3-11
Tag_GetUniqueName, 3-11
Tag_GetVaueAlarm, 3-11
Tag_New, 3-11
Tag_SetAccessinfo, 3-11
Tag_SetDeviationAlarm, 3-11
Tag_SetDiscAlarm, 3-11
Tag_SetEventinfo, 3-11
Tag_SetGroup, 3-11
Tag_Setinfo, 3-11
Tag_SetRateOfChangeAlarm, 3-11
Tag_SetRetentivelnfo, 3-12
Tag_SetScalinglnfo, 3-12
Tag_SetVaueAlarm, 3-12

DataChange ActiveX Control
About, 12-5
Errors, 12-9

Events, 12-6
AckStatusChanged, 12-6
AlarmStatusChanged, 12-6
ValueChanged, 12-7
Methods
AddWatch, 12-7
RemoveWatch, 12-9
Methods, 12-7
DblClick Event, 12-26
Debugging
Using CodeView, 8-1
Definition .DEF File, 5-6
Description
Wizard_GetlInfo, 4-4
DEVALARMINFO, 7-3
Dialog Controls, 2-31
Diaog Functions
WWDIg_CheckExprCitrl, 2-36
WWDIg_CheckTagCtrl, 2-36
WWDIg_GetDoubleCtrl, 2-36
WWDIg_ProcessKeyCitrl, 2-36
WWDIg_RegisterColorCitrl, 2-36
WWDIg_RegisterKeyCitrl, 2-36
WWDIg_RegisterTagnameCitrl, 2-36
WWDIg_ScriptEdit, 2-36
WWDIg_SetDoubleCtrl, 2-36
WWDIg_UnregisterColorCtrl, 2-36
WWDIg_UnregisterKeyCirl, 2-37
WWDIg_UnregisterTagnameCitrl, 2-37
Diaog Procedure, 2-26
DisableLnk_New, 3-7, 6-17
DISCALARMINFO, 7-4
DiscAlarmLnk_New, 3-7, 6-18
DiscColorLnk_New, 3-7, 6-19
DisclnputLnk_New, 3-7, 6-20
DiscOutputLnk_New, 3-7, 6-22
DiscTag_Getlnfo, 3-12, 6-22
DiscTag_Setinfo, 3-12, 6-23
DISCTAGINFO, 7-4
DiscTouchLnk_New, 3-7, 6-23
DLL Building, 2-17
DLL Functions
Wizard Edit, 5-6
Wizard_GetInfo, 2-6, 5-6
Wizard_New, 2-6, 5-6
WizardLib_GetlInfo, 2-6, 5-6
DLL Standard Functions, 3-2
DLLMain Function, 2-4
DIIObj_New, 3-4, 6-25
Double-Click, 6-99

E

EllipseObj_New, 3-4, 6-26
Error Dialog Box, 11-12
Expressions, 6-94

Index -3

F

Filter Expressions, 12-25

Flag Parameter, 9-5
Functionalities, 9-5

Flags, 9-5

Font_Scale, 3-6, 6-27

Fonts, 3-6, 6-27

Function Details
AccessName_Find, 6-2
AccessName_FindAppl Topic, 6-2
AccessName_Getlnfo, 6-2
AccessName_GetName, 6-3
AccessName_GetUniqueName, 6-3
AccessName_New, 6-4
AccessName_SetInfo, 6-4
AccessName_SetName, 6-5
AlarmObj_New, 6-6
AnlgAlarmLnk_New, 6-8
AnlgColorLnk_New, 6-11
AnlginputLnk_New, 6-12
AnlgOutputLnk_New, 6-13
AnlgTag_Getlnfo, 6-13
AnlgTag_Setinfo, 6-14
BitmapObj_New, 6-14
BlinkLnk_New, 6-15
ButtonObj_New, 6-16
DisableLnk_New, 6-17
DiscAlarmLnk_New, 6-18
DiscColorLnk_New, 6-19
DisclnputLnk_New, 6-20
DiscOutputLnk_New, 6-22
DiscTag_Getinfo, 6-22
DiscTag_Setinfo, 6-23
DiscTouchLnk_New, 6-23
DIIObj_New, 6-25
EllipseObj_New, 6-26
Font_Scale, 6-27
GroupObj_New, 6-28
HistTrendObj_New, 6-29
LineObj_New, 6-31
LocationLnk_New, 6-32
Obj_Delete, 6-34
OrientationLnk_New, 6-35
PctFillLnk_New, 6-36
Point_Scale, 6-38
PointArray_Scale, 6-40
PointReal _Scale, 6-42
PointRealArray_Scale, 6-44
PolygonObj _New, 6-46
PolylineObj_New, 6-46
Rea TrendObj_New, 6-47
Rect_Scale, 6-49
RectangleObj_New, 6-52
RectReal _Scale, 6-53
RRectangleObj_New, 6-56
SizeLnk_New, 6-57

SliderLnk_New, 6-59
Stmt_New, 6-61
StmtTouchLnk_New, 6-62
StrinputLnk_New, 6-63
StrOutputLnk_New, 6-64
StrTag_Setinfo, 6-65
SymbolObj_New, 6-65

Tag _Find, 6-66
Tag_FindAppl Topicltem, 6-66
Tag_GetAccessinfo, 6-67
Tag_GetGroup, 6-67
Tag_Getlnfo, 6-67
Tag_GetRetentivelnfo, 6-68
Tag_GetUniqueName, 6-68
Tag_GetVaueAlarm, 6-68
Tag_New, 6-69
Tag_SetAccessinfo, 6-70
Tag_SetDeviationAlarm, 6-71
Tag_SetDiscAlarm, 6-71
Tag_SetEventinfo, 6-71
Tag_SetGroup, 6-72
Tag_SetInfo, 6-72
Tag_SetRateOf ChangeAlarm, 6-72
Tag_SetRetentivelnfo, 6-73
Tag_SetScalinglnfo, 6-73
Tag_SetVaueAlarm, 6-73
Text_GetExtent, 6-74
TextObj_New, 6-75
TrendObj_Setltem, 6-76
TrendObj_SetTimelnfo, 6-77
TrendObj_SetValuelnfo, 6-78
VisibilityLnk_New, 6-79
Wizard_DoCommand, 4-7
Wizard_Edit, 4-3
Wizard_GetlInfo, 4-4
Wizard_New, 4-2
WizardLib_GetlInfo, 4-6
WizardObj New, 6-80
WizProp_Delete, 6-81
WizProp_Find, 6-81
WizProp_GetBlock, 6-82
WizProp_GetDouble, 6-83
WizProp_GetDWord, 6-84
WizProp_GetExpr, 6-85
WizProp_GetFont, 6-86
WizProp_GetStmt, 6-87
WizProp_GetString, 6-88
WizProp_New, 6-89
WizProp_SetBlock, 6-90
WizProp_SetDouble, 6-90
WizProp_SetbWord, 6-91
WizProp_SetExpr, 6-91
WizProp_SetFont, 6-92
WizProp_SetStmt, 6-93
WizProp_SetString, 6-93
WWDIg_CheckExprCitrl, 6-94
WWDIg_CheckTagCtrl, 6-95
WWDIg_GetDoubleCtrl, 6-96

-4 Index

WWDIg_ProcessKeyCtrl, 6-96
WWDIg_RegisterColorCtrl, 6-97
WWDIg_RegisterKeyCtrl, 6-98
WWDIg_RegisterTagNameCitrl, 6-99
WWDIg_ScriptEdit, 6-99
WWDIg_SetDoubleCtrl, 6-100
WWDIg_UnregisterColorCtrl, 6-100
WWDIg_UnregisterKeyCtrl, 6-101
WWDIg_UnregisterTagNameCtrl, 6-102
WWHKit_GetK eyStatus, 6-102
WWHKit_GetLastError, 6-103
WWHKit_GetSerial Number, 6-104
WWKit_Init, 6-105
WWHKit_SetBrush, 6-105
WWHKit_SetFont, 6-105
WWKit_SetPen, 6-106
WWHKit_SetTextBrush, 6-106
WWHKit_SetTextPen, 6-106

Function Names, 5-3
Functions

Database Tag
AccessName Find, 3-12, 6-2
AccessName_FindAppl Topic, 3-12, 6-2
AccessName_Getlnfo, 3-12, 6-2
AccessName_GetName, 3-12, 6-3
AccessName_GetUniqueName, 3-12, 6-3
AccessName_New, 3-12, 6-4
AccessName_SetInfo, 3-12, 6-4
AccessName_SetName, 3-12, 6-5
AnlgTag_GetlInfo, 3-12, 6-13
AnlgTag_Setinfo, 3-12, 6-14
DiscTag_GetInfo, 3-12, 6-22
DiscTag_Setinfo, 3-12, 6-23
StrTag_Setinfo, 3-12, 6-65
Tag_Find, 3-11, 6-66
Tag_FindAppl Topicltem, 3-11, 6-66
Tag_GetAccessinfo, 3-11, 6-67
Tag_GetGroup, 3-11, 6-67
Tag_GetlInfo, 3-11, 6-67
Tag_GetRetentivelnfo, 3-11, 6-68
Tag_GetUniqueName, 3-11, 6-68
Tag GetVaueAlarm, 3-11, 6-68
Tag New, 3-11, 6-69
Tag_SetAccessinfo, 3-11, 6-70
Tag_SetDeviationAlarm, 3-11, 6-71
Tag_SetDiscAlarm, 3-11, 6-71
Tag_SetEventinfo, 3-11, 6-71
Tag_SetGroup, 3-11, 6-72
Tag_Setinfo, 3-11, 6-72
Tag_SetRateOfChangeAlarm, 3-11, 6-72
Tag_SetRetentivelnfo, 3-12, 6-73
Tag_SetScalinglnfo, 3-12, 6-73
Tag_SetVaueAlarm, 3-12, 6-73

Diaogs
WWDIg_CheckExprCtrl, 2-36
WWDIg_CheckTagCtrl, 2-36
WWDIg_GetDoubleCtrl, 2-36
WWDIg_ProcessKeyCitrl, 2-36

WWDIg_RegisterColorCitrl, 2-36
WWDIg_RegisterKeyCitrl, 2-36
WWDIg_RegisterTagnameCitrl, 2-36
WWDIg_ScriptEdit, 2-36
WWDIg_SetDoubleCtrl, 2-36
WWDIg_UnregisterColorCtrl, 2-36
WWDIg_UnregisterKeyCirl, 2-37
WWDIg_UnregisterTagnameCitrl, 2-37
DLL
Wizard_DoCommand, 3-2
Wizard_Edit, 2-24, 3-2
Wizard_GetInfo, 2-14, 3-2
Wizard_New, 3-2
WizardLib_Getlnfo, 2-15, 3-2
DLLMain, 2-4
Genera
WWKit_GetKey Status, 6-102
WWKit_GetKeyStatus, 3-3
WWKit_GetL astError, 3-3, 6-103
WWKit_GetSerialNumber, 3-3, 6-104
WWKit_Init, 3-3, 6-105
WWKit_SetBrush, 3-3, 6-105
WWKit_SetFont, 3-3, 6-105
WWKit_SetPen, 3-3, 6-106
WWKit_SetTextBrush, 3-3, 6-106
WWKit_SetTextPen, 3-3, 6-106
Link
AnlgAlarmLnk_New, 3-7, 6-8
AnlgColorLnk_New, 3-7, 6-11
AnlglnputLnk_New, 3-7, 6-12
AnlgOutputLnk_New, 3-7, 6-13
BlinkLnk_New, 3-7, 6-15
DisableLnk_New, 3-7, 6-17
DiscAlarmLnk_New, 3-7, 6-18
DiscColorLnk_New, 3-7, 6-19
DisclnputLnk_New, 3-7, 6-20
DiscOutputLnk_New, 3-7, 6-22
DiscTouchLnk_New, 3-7, 6-23
LocationLnk_New, 3-7, 6-32
OrientationLnk_New, 3-7, 6-35
PctFillLnk_New, 3-7, 6-36
SizeLnk_New, 3-7, 6-57
SliderLnk_New, 3-7, 6-59
Stmt_New, 3-8, 6-61
StmtTouchLnk_New, 3-8, 6-62
StrinputLnk_New, 3-8, 6-63
StrOutputLnk_New, 3-8, 6-64
VisibilityLnk_New, 3-8, 6-79
Object
AlarmObj_New, 3-4, 6-6
BitmapObj New, 3-4, 6-14
ButtonObj_New, 3-4, 6-16
DIIObj_New, 3-4, 6-25
EllipseObj_New, 3-4, 6-26
GroupObj_New, 3-4, 6-28
HistTrendObj_New, 3-4, 6-29
LineObj_New, 3-4, 6-31
Obj_Delete, 3-5, 6-34

Index -5

PolygonObj_New, 3-4, 6-46
PolylineObj_New, 3-4, 6-46
Real TrendObj_New, 3-4, 6-47
RectangleObj New, 3-4, 6-52
RRectangleObj _New, 3-4, 6-56
SymbolObj_New, 3-5, 6-65
TextObj_New, 3-5, 6-75
TrendObj_Setitem, 3-5, 6-76
TrendObj_SetTimelnfo, 3-5, 6-77
TrendObj_SetValuelnfo, 3-5, 6-78
WizardObj_New, 3-5, 6-80

User Interface
WWDIg_CheckExprCitrl, 3-10, 6-94
WWNDIg_CheckTagCtrl, 3-10, 6-95
WWDIg_GetDoubleCtrl, 3-10, 6-96
WWDIg_ProcessKeyCitrl, 3-10, 6-96
WWDIg_RegisterColorCitrl, 3-10, 6-97
WWDIg_RegisterKeyCtrl, 3-10, 6-98
WWDIg_RegisterTagnameCitrl, 3-10, 6-99
WWDIg_ScriptEdit, 3-10, 6-99
WWDIg_SetDoubleCtrl, 3-10, 6-100
WWDIg_UnregisterColorCitrl, 3-10, 6-100
WWDIg_UnregisterKeyCtrl, 3-10, 6-101
WWDIg_UnregisterTagnameCitrl, 3-10,

6-102

Utility
Font_Scale, 3-6, 6-27
Point_Scale, 3-6, 6-38
PointArray_Scale, 3-6, 6-40
PointReal_Scale, 3-6, 6-42
PointRealArray Scale, 3-6, 6-44
Rect_Scale, 3-6, 6-49
RectReal _Scale, 3-6, 6-53
Text_GetExtent, 3-6, 6-74

Wizard DLL
Standard Functions, 3-2

Wizard Property
WizProp_Delete, 3-8, 6-81
WizProp_Find, 3-8, 6-81
WizProp_GetBlock, 3-8, 6-82
WizProp_GetDouble, 3-8, 6-83
WizProp_GetDWord, 3-8, 6-84
WizProp_GetExpr, 3-8, 6-85
WizProp_GetFont, 3-9, 6-86
WizProp_GetStmt, 3-9, 6-87
WizProp_GetString, 3-9, 6-88
WizProp_New, 3-9, 6-89
WizProp_SetBlock, 3-9, 6-90
WizProp_SetDouble, 3-9, 6-90
WizProp_SetDWord, 3-9, 6-91
WizProp_SetExpr, 3-9, 6-91
WizProp_SetFont, 3-9, 6-92
WizProp_SetStmt, 3-9, 6-93
WizProp_SetString, 3-9, 6-93

Functions Required to Create and Configure
Wizards, 4-2
Functions Required to Integrate Wizards, 4-4

G

General Functions, 3-3
WWKit_GetK eyStatus, 3-3
WWHKit_GetLastError, 3-3
WWKit_GetSerialNumber, 3-3
WWKit_Init, 3-3
WWKit_SetBrush, 3-3
WWKit_SetFont, 3-3
WWKit_SetPen, 3-3
WWKit_SetTextBrush, 3-3
WWKit_SetTextPen, 3-3

GetCurrentAppPath Method, 12-26

Getting Started with Script Functions
Toolkit, 9-2

Globals, 2-11

GroupObj_New, 3-4, 6-28

H

Hardware Requirements, 1-4
Header File, 5-4
Help File

Wizard_GetlInfo, 4-4
Highlighting Replacement V alues, 9-6
HistoricallyLoggedOnly Property, 12-22
HistTrendObj_New, 3-4, 6-29

IDEA Toolkit
Access ID Handles (ACCID), 10-6
Accessing Remote Tags, 10-13
Activating Variables, 10-7
Detecting InTouch Exits, 10-8
Differences Between 16 and 32-Bit
Compilers, 10-10
Function Reference, 10-26
Function Summary, 10-26
Data Read Functions, 10-26
Data Write Functions, 10-26
Initialization Functions, 10-26
Miscellaneous Functions, 10-27
Shutdown Functions, 10-27
Functional Description, 10-4
IDEA Programsin the Windows NT
Environment, 10-20
IDEA Toolkit
Running Toolkit Samples, 10-25
Installing for Microsoft C in aWindows NT
Environment, 10-24
InTouch Notification of Tag Changes, 10-21
InTouch Variable Types, 10-7
Point Handles (HPT), 10-6
Program Example, 10-14
Example #1, 10-14
Example #2, 10-15

-6 Index

Example #3, 10-16
Example #4, 10-19
Example #5, 10-19
PtAccACCIDFromHPT, 10-28
PtAccActivate, 10-29
PtAccActivateAndNotify, 10-30
PtAccActivateAndNotify and
PtAccHandleActivateAndNotify, 10-21
PtAccActivateAndSendNotify, 10-31
PtAccActivateAndSendNotify and
PtAccHandleActivateAndSndNotify, 10-22
PtAccDeactivate, 10-32
PtAccDelete, 10-32
PtAccGetExtralnt, 10-33
PtAccGetExtralong, 10-34
PtAccHandleActivate, 10-35
PtAccHandleActivateAndNotify, 10-36
PtAccHandleActivateAndSndNotify, 10-37
PtAccHandleCreate, 10-38
PtAccHandleDeactivate, 10-39
PtAccHandleDelete, 10-39
PtAcclnit, 10-6, 10-40
PtAccOK, 10-41
PtAccReadA, 10-41
PtAccReadD, 10-42
PtAccReadl, 10-43
PtAccReadM, 10-44
PtAccReadR, 10-45
PtAccSetExtralnt, 10-46
PtAccSetExtral ong, 10-47
PtAccShutdown, 10-48
PtAccShutdownAllAssociated, 10-48
PtAccType, 10-49
PtAccWriteA, 10-50
PtAccWriteD, 10-51
PtAccWritel, 10-52
PtAccWriteM, 10-53
PtAccWriteR, 10-54
Reading InTouch
Five Functions, 10-8
Reading InTouch Variables, 10-8
Requirements, 10-2
Special Data Types, 10-5
Storing and Retrieving Information, 10-9
Storing Program Data With Each HPT, 10-9
Summary of IDEA Options & Requirements,
10-2
Tag Handles and Memory Usage, 10-11
Toolkit Contents, 10-3
Use of Environment Variables, 10-23
Variable
InUse, 10-7
Visua Basic 5.0 32-Bit Sample, 10-25
Windows C ++ Simple Sample, 10-25
Windows C Complex Sample, 10-25
Windows C Simple Sample, 10-25
Writing InTouch Variables, 10-8
Writing to InTouch

Five Functions, 10-8
I nformation Command
WIZ_BITMAP, 2-5
WIZ_DESCRIPTION, 2-5
WIZ_FLAGS, 2-5
WIZ_GROUPNAME, 2-5
WIZ_TBOXBITMAP, 2-5
Installing for Microsoft C in aWindows NT
Environment, 10-24
Installing ITEdit.OCX, 11-3
Installing the InTouch Extensibility Toolkit, 1-4
Installing the Wizard in WindowMaker, 2-17
Installing Y our Script Extensions, 9-7
Integrating, 2-12
Integrating Wizards into InTouch, 4-4
InTouch Database External Access (IDEA)
Toolkit, 10-1
InTouch Script Functions (Toolkit), 9-1
I TActivationMode Property, 11-6
ITDatalsValid Property, 11-9
ITEdit.OCX
Configuring, 11-3
Custom Properties, 11-6
Error Dialog Box, 11-12
ITDatalsValid Property, 11-9
ITEdit Properties, 11-5
I TFormat Property, 11-9
ITNotifyQuality Event, 11-11
ITNotifyValue Event, 11-11
I TOffMessage Property, 11-9
I TOnMessage Property, 11-9
ITRunning Property, 11-9
ITTagName Property, 11-10
ITTagType Property, 11-10
ITValue Property, 11-10
ITVaueQuality Property, 11-10
Overview ITEdit.OCX, 11-2
PropertiesList, 11-5
Registering ITEdit.OCX, 11-2
Stock Properties, 11-5
ITEdit.OCX ITActivationMode Property, 11-6
I TFormat Property, 11-9
ITNotifyQuality Event, 11-11
ITNotifyValue Event, 11-11
I TOffMessage Property, 11-9
ITOnMessage Property, 11-9
ITRunning Property, 11-9
ITTagName Property, 11-10
ITTagType Property, 11-10
ITVaue Property, 11-10
ITVaueQuality Property, 11-10

K

Key Equivalents, 6-98

Index -7

L

LineObj_New, 3-4, 6-31
Link Functions, 3-7
AnlgAlarmLnk_New, 3-7
AnlgColorLnk_New, 3-7
AnlglnputLnk_New, 3-7
AnlgOutputLnk_New, 3-7
BlinkLnk_New, 3-7
DisableLnk_New, 3-7
DiscAlarmLnk_New, 3-7
DiscColorLnk_New, 3-7
DisclnputLnk_New, 3-7
DiscOutputLnk_New, 3-7
DiscTouchLnk_New, 3-7
LocationLnk_New, 3-7
OrientationLnk_New, 3-7
PctFillLnk_New, 3-7
SizeLnk_New, 3-7
SliderLnk_New, 3-7
Stmt_New, 3-8
StmtTouchLnk_New, 3-8
StrinputLnk_New, 3-8
StrOutputLnk_New, 3-8
VisibilityLnk_New, 3-8
LocationLnk_New, 3-7, 6-32
LogEventsOnly Property, 12-22

M

Manipulates
Existing Window Objects, 3-5
Object Links, 3-8
Mode
EDIT, 2-5
NEW, 2-5
RESTORE, 2-5
SIZE, 2-5
Multiple Wizards Libraries
Creating, 2-19

N

Naming Conventions, 2-21
Basic, 5-1

O

Obj_Delete, 3-5, 6-34

Object Functions, 3-4
AlarmObj_New, 3-4
BitmapObj_New, 3-4
ButtonObj _New, 3-4
DIIObj_New, 3-4
EllipseObj_New, 3-4
GroupObj_New, 3-4
HistTrendObj New, 3-4
LineObj_New, 3-4

Obj_Delete, 3-5
PolygonObj New, 3-4
PolylineObj_New, 3-4
Real TrendObj_New, 3-4
RectangleObj New, 3-4
RRectangleObj New, 3-4
SymbolObj_New, 3-5
TextObj_New, 3-5
TrendObj_Setltem, 3-5
TrendObj_SetTimelnfo, 3-5
TrendObj_SetValuelnfo, 3-5
WizardObj_New, 3-5
OrientationLnk_New, 3-7, 6-35

P

Pasting Functions and Arguments, 9-6
PctFillLnk_New, 3-7, 6-36
Point_Scale, 3-6, 6-38
PointArray_Scale, 3-6, 6-40
PointReal _Scale, 3-6, 6-42
PointRealArray_Scale, 3-6, 6-44
PolygonObj_New, 3-4, 6-46
PolylineObj_New, 3-4, 6-46
Property Functions, 3-8

Property Names, 2-25

prototyping, 2-8
PtAccACCIDFromHPT, 10-28
PtAccActivate, 10-29
PtAccActivateAndNotify, 10-30
PtAccActivateAndSendNotify, 10-31
PtAccDeactivate, 10-32
PtAccDelete, 10-32
PtAccGetExtralnt, 10-33
PtAccGetExtralong, 10-34
PtAccHandleActivate, 10-35
PtAccHandleActivateAndNotify, 10-36
PtAccHandleActivateAndSndNotify, 10-37
PtAccHandleCreate, 10-38
PtAccHandleDeactivate, 10-39
PtAccHandleDelete, 10-39
PtAcclnit, 10-40

PtAccOK, 10-41

PtAccReadA, 10-41

PtAccReadD, 10-42

PtAccReadl, 10-43

PtAccReadM, 10-44

PtAccReadR, 10-45
PtAccSetExtralnt, 10-46
PtAccSetExtralong, 10-47
PtAccShutdown, 10-48
PtAccShutdownAllAssociated, 10-48
PtAccType, 10-49

PtAccWriteA, 10-50

PtAccWriteD, 10-51

-8 Index

PtAccWritel, 10-52
PtAccWriteM, 10-53
PtAccWriteR, 10-54

R

Real TrendObj_New, 3-4, 6-47
Rect_Scale, 3-6, 6-49
RectangleObj_New, 3-4, 6-52
RectReal _Scale, 3-6, 6-53
RemoveWatch Method, 12-9
Requirements, 1-5

Resource .RC Filg, 5-6
RetentiveOnly Property, 12-22
ROCALARMINFO, 7-5
RRectangleObj New, 3-4, 6-56

S

Samples
IDEA Toolkit, 10-25
Visua Basic 5.0, 10-25
Windows C, 10-25
Windows C ++ Simple Sample, 10-25
Windows C Complex, 10-25
Scaling
Fonts, 3-6, 6-27
Points, 3-6, 6-38
Rects, 3-6, 6-49
Scaling Functions, 3-6
Script Editor, 6-99
Script Functions Toolkit, 9-1
Combining Scripts with IDEA, 9-9
Def File Example, 9-8
Flag Parameter, 9-5
Function Help String, 9-6
Getting Started, 9-2
Highlighting Replacement V alues, 9-6
Installing Y our Script Extensions, 9-7
Parameter Functionalities, 9-5
Pasting Functions and Arguments, 9-6
RC file Example, 9-9
Sample Script, 9-7
Specia Flag Considerations, 9-5
Script Functions Toolkit Functionality
Functions List, 9-2
Scripts Functions Toolkit
\WDF Filg, 9-2
Flags, 9-5
IDF file Example, 9-9
SelectedTag Property, 12-22
SelectedTagAccessName Property, 12-22
SelectedTagAlarmGroup Property, 12-22
SelectedTagDescription Property, 12-22
SelectedTagMode Property, 12-22
SelectedTagType Property, 12-23

SelectionChanged Event, 12-26

Sending Debug Messages to the Wonderware

Logger, 8-8
ShowA ccessNames Property, 12-23
ShowA ppPath Property, 12-23
Simple Wizard
.DEF File, 2-7
.RCFile, 2-17
Building, 2-8
SizeLnk_New, 3-7, 6-57
Sizing
Wizard_GetlInfo, 4-4
SliderLnk_New, 3-7, 6-59
Software Requirements, 1-4
Special Dialog Controls, 2-31
Specia Wizard Tests, 8-7
Stepsto Follow, 8-7
Specific Requirements, 1-5
Statements, 3-8, 6-61
Stmt_New, 6-61
StmtTouchLnk_New, 3-8, 6-62
STRINGTABLE
Wizard Description, 5-7
StrinputLnk_New, 3-8, 6-63
StrOutputLnk_New, 3-8, 6-64
StrTag_Setinfo, 3-12, 6-65
STRTAGINFO, 7-5
Structure Details
ACCESSNAMEINFO, 7-2
ANLGTAGINFO, 7-2
DEVALARMINFO, 7-3
DISCALARMINFO, 7-4
DISCTAGINFO, 7-4
ROCALARMINFO, 7-5
STRTAGINFO, 7-5
TAGACCESSINFO, 7-6
TAGEVENTINFO, 7-6
TAGINFO, 7-7
TAGRETENTIVEINFO, 7-7
TAGSCALEINFO, 7-8
VALALARMINFO, 7-9
SymbolObj_New, 3-5, 6-65

T

Tag Access
About, 12-2
Combining the DataChange Control and
TagLink Object, 12-18
DataChange ActiveX Control
About, 12-5
Errors, 12-9
Events, 12-6
AckStatusChanged, 12-6
AlarmStatusChanged, 12-6
VaueChanged, 12-7

Index -9

Methods, 12-7
AddWatch, 12-7
RemoveWatch, 12-9
Deployment Information, 12-4
Sample Applications, 12-17
TagBrowser ActiveX Control
About, 12-20
Events, 12-26
ApplicationChanged, 12-26
DblClick, 12-26
SelectionChanged, 12-26
Methods, 12-26
GetCurrentAppPath, 12-26
UpdateView, 12-26
Properties, 12-20
AccessNameFilter, 12-20
AlarmGroupFilter, 12-20
AllowBrowsing, 12-21
AllowViewChanges, 12-21
AppPath, 12-21
AutoRefresh, 12-22
HistoricallyLoggedOnly, 12-22
LogEventsOnly, 12-22
RetentiveOnly, 12-22
SelectedTag, 12-22
SelectedTagAccessName, 12-22
SelectedTagAlarmGroup, 12-22
SelectedTagDescription, 12-22
SelectedTagMode, 12-22
SelectedTagType, 12-23
ShowA ccessNames, 12-23
ShowAppPath, 12-23
TagNameFilter, 12-23
TagTypeFilter, 12-23
TagLink Object
About, 12-10
Dot Field Properties, 12-14
Errors, 12-17
Properties, 12-11
TagName, 12-11
TagType, 12-13
Valid, 12-13
Tag Functions, 3-11
Tag Types, 12-24
Tag_Find, 3-11, 6-66
Tag_FindAppl Topicltem, 3-11, 6-66
Tag_GetAccessinfo, 3-11, 6-67
Tag_GetGroup, 3-11, 6-67
Tag_GetInfo, 3-11, 6-67
Tag_GetRetentivelnfo, 3-11, 6-68
Tag_GetUniqueName, 3-11, 6-68
Tag GetVaueAlarm, 3-11, 6-68
Tag New, 3-11, 6-69
Tag_SetAccessinfo, 3-11, 6-70
Tag_SetDeviationAlarm, 3-11, 6-71
Tag_SetDiscAlarm, 3-11, 6-71

Tag_SetEventinfo, 3-11, 6-71
Tag_SetGroup, 3-11, 6-72
Tag_Setinfo, 3-11, 6-72
Tag_SetRateOfChangeAlarm, 3-11, 6-72
Tag_SetRetentivelnfo, 3-12, 6-73
Tag_SetScalinglnfo, 3-12, 6-73
Tag_ SetVaueAlarm, 3-12, 6-73
TAGACCESSINFO, 7-6
TagBrowser ActiveX Control
About, 12-20
Events
ApplicationChanged, 12-26
DblClick, 12-26
SelectionChanged, 12-26
Events, 12-26
Methods, 12-26
GetCurrentAppPath, 12-26
UpdateView, 12-26
Properties, 12-20
AccessNameFilter, 12-20
AlarmGroupFilter, 12-20
AllowBrowsing, 12-21
AllowViewChanges, 12-21
AppPath, 12-21
AutoRefresh, 12-22
HistoricallyLoggedOnly, 12-22
LogEventsOnly, 12-22
RetentiveOnly, 12-22
SelectedTag, 12-22
SelectedTagAccessName, 12-22
SelectedTagAlarmGroup, 12-22
SelectedTagDescription, 12-22
SelectedTagMode, 12-22
SelectedTagType, 12-23
ShowA ccessNames, 12-23
ShowAppPath, 12-23
TagNameFilter, 12-23
TagTypeFilter, 12-23
TAGEVENTINFO, 7-6
TAGINFO, 7-7
TagLink ActiveX Object
About, 12-10
Dot Field Properties, 12-14
Properties, 12-11
Tagname, 12-11
TagType, 12-13
valid, 12-13
TagLink Object
Errors, 12-17
Tagname Property, 12-11
TagNameFilter Property, 12-23
TAGRETENTIVEINFO, 7-7
Tags
Creating, 3-11, 6-69
Finding, 3-11, 6-66
Unique Names, 3-11, 6-68

I-10 Index

TAGSCALEINFO, 7-8
TagType Property, 12-13
TagTypeFilter Property, 12-23
Testing

A Newly Installed Wizard, 8-2
Testing Toolbox Operations, 8-6

Stepsto Follow, 8-6
Testing Toolbox Operations on a Wizard, 8-6
Testing Wizard

Sizing, 8-3
Testing Wizard Configurations, 8-5
Testing Wizard Editing Capabilities, 8-4
Testing Wizard Sizing, 8-3
Testing Wizards

Steps to check for proper install., 8-2
Text_GetExtent, 3-6, 6-74
TextObj_New, 3-5, 6-75
Toolbox

Wizard_GetInfo, 4-4
Toolkit Dialog Functions, 2-36
TrendObj_Setltem, 3-5, 6-76
TrendObj_SetTimelnfo, 3-5, 6-77
TrendObj_SetValuelnfo, 3-5, 6-78

U

UpdateView Method, 12-26
User Interface Functions, 3-10
WWDIg_CheckExprCtrl, 3-10
WWDIg_CheckTagCtrl, 3-10
WWDIg_GetDoubleCtrl, 3-10
WWDIg_ProcessKeyCitrl, 3-10
WWDIg_RegisterColorCtrl, 3-10
WWDIg_RegisterKeyCtrl, 3-10
WWDIg_RegisterTagnameCitrl, 3-10
WWDIg_ScriptEdit, 3-10
WWDIg_UnregisterColorCtrl, 3-10
WWDIg_UnregisterKeyCtrl, 3-10
WWDIg_UnregisterTagnameCtrl, 3-10
User Supplied Functions, 4-1
User Supplied Required Functions, 4-4
User Supplied Wizards
Configure, 4-2
Creating, 4-2
Wizard_DoCommand, 4-7
Wizard_Edit, 4-3
Wizard_Edit must be supplied, 4-2
Wizard_Getinfo, 4-4
Wizard_GetInfo must be supplied, 4-4
Wizard _New, 4-2
Wizard_New must be supplied, 4-2
WizardLib_Getlnfo, 4-6
WizardLib_Getlnfo must be supplied, 4-4
Using CodeView to Debug the Wizard DLL, 8-9
Using Visual C++ to Debug, 8-10
Utility Functions, 3-6

Font_Scale, 3-6

Point Array_Scale, 3-6
Point_Scale, 3-6
PointReal_Scale, 3-6
PointRealArray Scale, 3-6
Rect_Scale, 3-6
RectReal_Scale, 3-6
Text_GetExtent, 3-6

Vv

VALALARMINFO, 7-9
Valid Property, 12-13
VaueChanged Event, 12-7
Version Number
WizardLib_Getlnfo, 4-6
VisibilityLnk_New, 3-8, 6-79

W

Windows 98 and Windows NT Compatibility,
14
WIZ_BITMAP, 2-5
WIZ_BITMAP, 4-4
WIZ_COMPANYNAME
WizardLib_GetlInfo, 4-6
WIZ_DESCRIPTION, 2-5
Wizard_GetlInfo, 4-4
WIZ_FLAGS, 2-5
Wizard_GetlInfo, 4-4
WIZ_GROUPNAME, 2-5
Wizard_GetlInfo, 4-4
WIZ_HELPINFO
Wizard_GetlInfo, 4-4
WIZ_LIBNAME
WizardLib_GetlInfo, 4-6
WIZ_NEXTWIZID
WizardLib_GetlInfo, 4-6
WIZ_SIZEMODE
Wizard_GetlInfo, 4-4
WIZ_TBOXBITMAP, 2-5
Wizard_GetlInfo, 4-4
WIZ_VERSIONNUM
WizardLib_GetlInfo, 4-6
WIZ_VERSIONSTR
WizardLib_GetlInfo, 4-6

Wizard
.DEF File, 5-6
.RCFile, 5-6

Building a Configurable Wizard, 2-22

Building a Simple Wizard, 2-8

Building DLL, 2-17

Creating Libraries with Multiple Wizards,
2-19

description, 2-2

Dialog Proc, 2-26

DLLMain, 2-4

Index -11

Globals, 2-11
Installing in WindowM aker, 2-17
Integrating into WindowM aker, 2-12
Naming Conventions, 2-21
Property Names, 2-25
Special Dialog Contrals, 2-31
Toolkit Dialog Functions, 2-36
WIZARD.C File, 2-9
Wizard_Edit, 2-24
Wizard_GetInfo, 2-14
WizardLib_GetInfo, 2-15
Wizard APl Functions, 2-36, 3-3
AccessName Find, 6-2
AccessName_FindAppl Topic, 6-2
AccessName_Getlnfo, 6-2
AccessName_GetName, 6-3
AccessName_GetUniqueName, 6-3
AccessName_New, 6-4
AccessName_SetInfo, 6-4
AccessName_SetName, 6-5
AlarmObj_New, 6-6
AnlgAlarmLnk_New, 6-8
AnlgColorLnk_New, 6-11
AnlginputLnk_New, 6-12
AnlgOutputLnk_New, 6-13
AnlgTag_GetInfo, 6-13
AnlgTag_Setinfo, 6-14
BitmapObj_New, 6-14
BlinkLnk_New, 6-15
ButtonObj_New, 6-16
Database Tag Functions, 3-11
AccessName Find, 3-12
AccessName_FindAppl Topic, 3-12
AccessName_Getlnfo, 3-12
AccessName_GetName, 3-12
AccessName_GetUniqueName, 3-12
AccessName_New, 3-12
AccessName_SetInfo, 3-12
AccessName_SetName, 3-12
AnlgTag_GetInfo, 3-12
AnlgTag_Setinfo, 3-12
DiscTag_GetInfo, 3-12
DiscTag_Setinfo, 3-12
StrTag_Setinfo, 3-12
Tag_Find, 3-11
Tag_FindApplTopicltem, 3-11
Tag_GetAccessinfo, 3-11
Tag_GetGroup, 3-11
Tag_GetlInfo, 3-11
Tag_GetRetentivelnfo, 3-11
Tag_GetUniqueName, 3-11
Tag GetVaueAlarm, 3-11
Tag_New, 3-11
Tag_SetAccessinfo, 3-11
Tag_SetDeviationAlarm, 3-11
Tag_SetDiscAlarm, 3-11
Tag_SetEventinfo, 3-11
Tag_SetGroup, 3-11

Tag_Setinfo, 3-11
Tag_SetRateOfChangeAlarm, 3-11
Tag_SetRetentivelnfo, 3-12
Tag_SetScalinglnfo, 3-12
Tag_SetVaueAlarm, 3-12
DisableLnk_New, 6-17
DiscAlarmLnk_New, 6-18
DiscColorLnk_New, 6-19
DisclnputLnk_New, 6-20
DiscOutputLnk_New, 6-22
DiscTag_GetInfo, 6-22
DiscTag_SetInfo, 6-23
DiscTouchLnk_New, 6-23
DIIObj_New, 6-25
EllipseObj_New, 6-26
Font_Scale, 6-27
Genera Functions, 3-3
WWKit_GetKeyStatus, 3-3
WWKit_GetL astError, 3-3
WWKit_GetSerialNumber, 3-3
WWKit_Init, 3-3
WWKit_SetBrush, 3-3
WWKit_SetFont, 3-3
WWKit_SetPen, 3-3
WWKit_SetTextBrush, 3-3
WWKit_SetTextPen, 3-3
GroupObj_New, 6-28
HistTrendObj New, 6-29
LineObj_New, 6-31
Link Functions, 3-7
AnlgAlarmLnk_New, 3-7
AnlgColorLnk_New, 3-7
AnlglnputLnk_New, 3-7
AnlgOutputLnk_New, 3-7
BlinkLnk_New, 3-7
DisableLnk_New, 3-7
DiscAlarmLnk_New, 3-7
DiscColorLnk_New, 3-7
DisclnputLnk_New, 3-7
DiscOutputLnk_New, 3-7
DiscTouchLnk_New, 3-7
LocationLnk_New, 3-7
OrientationLnk_New, 3-7
PctFIILnk_New, 3-7
SizelL nk_New, 3-7
SliderLnk_New, 3-7
Stmt_New, 3-8
StmtTouchLnk_New, 3-8
StrinputLnk_New, 3-8
StrOutputLnk_New, 3-8
VisbilityLnk_New, 3-8
LocationLnk_New, 6-32
Obj_Delete, 6-34
Object Functions, 3-3
AlarmObj_New, 3-4
BitmapObj_New, 3-4
ButtonObj_New, 3-4
DIIObj_New, 3-4

1-12 Index

ElllipseObj_New, 3-4
GroupObj_New, 3-4
HistTrendObj New, 3-4
LineObj_New, 3-4
Obj_Delete, 3-5
PolygonObj_New, 3-4
PolylineObj_New, 3-4
Real TrendObj_New, 3-4
RectangleObj New, 3-4
RRectangleObj New, 3-4
SymbolObj_New, 3-5
TextObj New, 3-5
TrendObj_Setitem, 3-5
TrendObj_SetTimelnfo, 3-5
TrendObj_SetValuelnfo, 3-5
WizardObj_New, 3-5
OrientationLnk_New, 6-35
PctFillLnk_New, 6-36
Point_Scale, 6-38
PointArray_Scale, 6-40
PointReal_Scale, 6-42
PointRealArray Scale, 6-44
PolygonObj_New, 6-46
PolylineObj_New, 6-46
Real TrendObj_New, 6-47
Rect_Scale, 6-49
RectangleObj New, 6-52
RectReal _Scale, 6-53
RRectangleObj New, 6-56
Sizel nk_New, 6-57
SliderLnk_New, 6-59
Stmt_New, 6-61
StmtTouchLnk_New, 6-62
StrinputLnk_New, 6-63
StrOutputLnk_New, 6-64
StrTag_SetInfo, 6-65
SymbolObj_New, 6-65
Tag_Find, 6-66
Tag_FindAppl Topicltem, 6-66
Tag_GetAccessinfo, 6-67
Tag_GetGroup, 6-67
Tag_GetInfo, 6-67
Tag_GetRetentivelnfo, 6-68
Tag_GetUniqueName, 6-68
Tag_GetVaueAlarm, 6-68
Tag_New, 6-69
Tag_SetAccessinfo, 6-70
Tag_SetDeviationAlarm, 6-71
Tag_SetDiscAlarm, 6-71
Tag_SetEventinfo, 6-71
Tag_SetGroup, 6-72
Tag_SetInfo, 6-72

Tag_SetRateOfChangeAlarm, 6-72

Tag_SetRetentivelnfo, 6-73
Tag_SetScalinglnfo, 6-73
Tag_SetVaueAlarm, 6-73
Text_GetExtent, 6-74
TextObj_New, 6-75

TrendObj_Setltem, 6-76
TrendObj_SetTimelnfo, 6-77
TrendObj_SetValuelnfo, 6-78
User Interface Functions, 3-10
WWDIg_CheckExprCitrl, 3-10
WWDIg_CheckTagCtrl, 3-10
WWDIg_GetDoubleCtrl, 3-10
WWDIg_ProcessKeyCirl, 3-10
WWDIg_RegisterColorCitrl, 3-10
WWDIg_RegisterKeyCitrl, 3-10
WWDIg_RegisterTagnameCitrl, 3-10
WWDIg_ScriptEdit, 3-10
WWDIg_UnregisterColorCtrl, 3-10
WWDIg_UnregisterKeyCirl, 3-10
WWDIg_UnregisterTagnameCitrl, 3-10
Utility Functions, 3-6
Font_Scale, 3-6
Point_Scale, 3-6
PointArray_Scale, 3-6
PointReal_Scale, 3-6
PointRealArray Scale, 3-6
Rect_Scale, 3-6
Text_GetExtent, 3-6
VisibilityLnk_New, 6-79
Wizard Property Functions, 3-8
WizProp_Delete, 3-8
WizProp_Find, 3-8
WizProp_GetBlock, 3-8
WizProp_GetDouble, 3-8
WizProp_GetDWord, 3-8
WizProp_GetExpr, 3-8
WizProp_GetFont, 3-9
WizProp_GetStmt, 3-9
WizProp_GetString, 3-9
WizProp_New, 3-9
WizProp_SetBlock, 3-9
WizProp_SetDouble, 3-9
WizProp_SetbWord, 3-9
WizProp_SetExpr, 3-9
WizProp_SetFont, 3-9
WizProp_SetStmt, 3-9
WizProp_SetString, 3-9
WizardObj New, 6-80
WizProp_Delete, 6-81
WizProp_Find, 6-81
WizProp_GetBlock, 6-82
WizProp_GetDouble, 6-83
WizProp_GetDWord, 6-84
WizProp_GetExpr, 6-85
WizProp_GetFont, 6-86
WizProp_GetStmt, 6-87
WizProp_GetString, 6-88
WizProp_New, 6-89
WizProp_SetBlock, 6-90
WizProp_SetDouble, 6-90
WizProp_SetbWord, 6-91
WizProp_SetExpr, 6-91
WizProp_SetFont, 6-92

Index 1-13

WizProp_SetStmt, 6-93
WizProp_SetString, 6-93
WWDIg_CheckExprCtrl, 6-94
WWDIg_CheckTagCtrl, 6-95
WWDIg_GetDoubleCtrl, 6-96
WWDIg_ProcessKeyCtrl, 6-96
WWDIg_RegisterColorCtrl, 6-97
WWDIg_RegisterKeyCtrl, 6-98
WWDIg_RegisterTagNameCitrl, 6-99
WWDIg_ScriptEdit, 6-99
WWDIg_SetDoubleCtrl, 6-100
WWDIg_UnregisterColorCtrl, 6-100
WWDIg_UnregisterKeyCtrl, 6-101
WWDIg_UnregisterTagNameCtrl, 6-102
WWHKit_GetK eyStatus, 6-102
WWHKit_GetLastError, 6-103
WWHKit_GetSerial Number, 6-104
WWKit_Init, 6-105
WWHKit_SetBrush, 6-105
WWKIit_SetFont, 6-105
WWKit_SetPen, 6-106
WWHKit_SetTextBrush, 6-106
WWHKit_SetTextPen, 6-106

Wizard API Structures
ACCESSNAMEINFO, 7-2
ANLGTAGINFO, 7-2
DEVALARMINFO, 7-3
DISCALARMINFO, 7-4
DISCTAGINFO, 7-4
ROCALARMINFO, 7-5
STRTAGINFO, 7-5
TAGACCESSINFO, 7-6
TAGEVENTINFO, 7-6
TAGINFO, 7-7
TAGRETENTIVEINFO, 7-7
TAGSCALEINFO, 7-8
VALALARMINFO, 7-9

Wizard Basics, 2-5

Wizard C Modules, 5-3

Wizard Configuration Testing, 8-5

Wizard Debbugging
Debugging aWizard DLL, 8-9

Wizard Debugging
Sending Messages to Wonderware Logger,

8-8
Using CodeView, 8-9
Using Visua C++, 8-10
Stepsto Follow, 8-10

Wizard Description
STRINGTABLE, 5-7

Wizard DLL Components, 2-3

Wizard DLL Standard Functions, 3-2

Wizard Editing, 8-4

Wizard Editing Capability
Stepsto Follow, 8-4

Wizard Group
Wizard_Getinfo, 4-4

Wizard Installation, 2-17
Wizard Library Development, 5-2
Guidlines, 5-2
Wizard Library Directory, 5-2
Wizard Library File
Function Names, 5-3
Header File, 5-4
Wizard C Modules, 5-3
WIZMAIN.C, 5-3
Wizard Naming Conventions, 5-1
Wizard Property Functions, 3-8
WizProp_Delete, 3-8
WizProp_Find, 3-8
WizProp_GetBlock, 3-8
WizProp_GetDouble, 3-8
WizProp_GetDWord, 3-8
WizProp_GetExpr, 3-8
WizProp_GetFont, 3-9
WizProp_GetStmt, 3-9
WizProp_GetString, 3-9
WizProp_New, 3-9
WizProp_SetBlock, 3-9
WizProp_SetDouble, 3-9
WizProp_SetbWord, 3-9
WizProp_SetExpr, 3-9
WizProp_SetFont, 3-9
WizProp_SetStmt, 3-9
WizProp_SetString, 3-9
Wizard Sizing Steps, 8-3
Wizard Testing
Configuration, 8-5
Editing Capability, 8-4
Newly Installed, 8-2
Sizing, 8-3
Specia Wizard Tests, 8-7
Toolbox Operations, 8-6
Wizard Testing Guidelines, 8-2
Wizard Toolkit
WZMAIN.C, 5-3
Wizard Toolkit API Structures, 7-1
Wizard Toolkit Application Programming
Interface, 6-1
WIZARD.C File, 2-9
WIZARD.DEF, 2-3
WIZARD.RC, 2-3
Wizard_DoCommand, 3-2, 4-7
Parameters, 4-7
Wizard_Edit, 2-24, 3-2, 4-3
Parameters, 4-3
Wizard_GetInfo, 2-6, 2-12, 2-14, 3-2, 4-4
Commands, 2-13
Parameters, 2-12, 4-4
Wizard_GetLiblnfo, 2-12
Commands, 2-12
Wizard New, 2-6, 3-2, 4-2
Parameters, 4-2

I-14 Index

WizardLib_Getlnfo, 2-6, 2-15, 3-2, 4-6

Commands, 2-15

Parameters, 2-15, 4-6
WizardObj_New, 3-5, 6-80
WizProp_Delete, 3-8, 6-81
WizProp_Find, 3-8, 6-81
WizProp_GetBlock, 3-8, 6-82
WizProp_GetDouble, 3-8, 6-83
WizProp_GetDWord, 3-8, 6-84
WizProp_GetExpr, 3-8, 6-85
WizProp_GetFont, 3-9, 6-86
WizProp_GetStmt, 3-9, 6-87
WizProp_GetString, 3-9, 6-88
WizProp_New, 3-9, 6-89
WizProp_SetBlock, 3-9, 6-90
WizProp_SetDouble, 3-9, 6-90
WizProp_SetDWord, 3-9, 6-91
WizProp_SetExpr, 3-9, 6-91
WizProp_SetFont, 3-9, 6-92
WizProp_SetStmt, 3-9, 6-93
WizProp_SetString, 3-9, 6-93
Wonderware Logger

Using Wonderware Logger to Debug, 8-8
WWDIg_CheckExprCtrl, 3-10, 6-94
WWDIg_CheckTagCtrl, 3-10, 6-95
WWDIg_GetDoubleCtrl, 3-10, 6-96
WWDIg_ProcessKeyCitrl, 3-10, 6-96
WWDIg_RegisterColorCitrl, 3-10, 6-97
WWDIg_RegisterKeyCitrl, 3-10, 6-98
WWDIg_RegisterTagnameCtrl, 3-10, 6-99
WWDIg_ScriptEdit, 3-10, 6-99
WWDIg_SetDoubleCtrl, 3-10, 6-100
WWDIg_UnregisterColorCtrl, 3-10, 6-100
WWDIg_UnregisterKeyCirl, 3-10, 6-101
WWDIg_UnregisterTagnameCitrl, 3-10, 6-102
WWKit_GetK eyStatus, 3-3, 6-102
WWKit_GetL astError, 3-3, 6-103
WWKit_GetSerialNumber, 3-3, 6-104
WWKit_lInit, 3-3, 6-105
WWKit_SetBrush, 3-3, 6-105
WWKit_SetFont, 3-3, 6-105
WWKit_SetPen, 3-3, 6-106
WWKit_SetTextBrush, 3-3, 6-106
WWKit_SetTextPen, 3-3, 6-106
WZMAIN.C, 2-3, 5-3

	Wonderware FactorySuite InTouch Extensibility Toolkit User's Guide
	Contents
	Chapter 1 - Introduction to the InTouch Extensibility Toolkit
	About the InTouch Extensibility Toolkit
	Installing the InTouch Extensibility Toolkit
	Hardware/Software Requirements
	Windows 98 and Windows NT Compatibility
	Developer Requirements
	Documentation Conventions
	Terms Used in this Document

	Chapter 2 - Getting Started with the Wizard Toolkit
	What is a Wizard?
	The Components of a Wizard DLL
	Wizard Basics
	Simple Wizard .DEF File Example

	Building a Simple Wizard
	WIZARD.C File
	Globals

	Integrating a Wizard into WindowMaker
	Wizard_GetInfo Example
	Simple Wizard .RC File Example
	Building the Wizard DLL
	Installing the Wizard in WindowMaker

	Wizard Libraries
	Creating Libraries with Multiple Wizards
	Naming Conventions

	Building a Configurable Wizard
	Special Wizard Dialog Controls
	Wizard Toolkit Dialog Functions

	Chapter 3 - Wizard Toolkit Functions
	Wizard DLL Standard Functions
	Wizard API Functions
	General Functions
	Object Functions
	Utility Functions
	Link Functions
	Wizard Property Functions
	User Interface Functions
	Database Tag Functions

	Chapter 4 - User Supplied Wizard Functions
	Functions Required to Create and Configure Wizards
	Wizard_New
	Wizard_Edit

	Functions Required to Integrate Wizards into InTouch
	Wizard_GetInfo
	WizardLib_GetInfo

	Command Wizards
	Wizard_DoCommand

	Chapter 5 - Style Guide for Wizard Library Development
	Guidelines for Wizard Library Development
	Creating Libraries with Multiple Wizards
	Wizard Library Directory
	Wizard C Modules
	Function Names
	WZMAIN.C
	Header File
	Definition (.DEF) File
	Resource (.RC) File

	Chapter 6 - Wizard API Function Reference
	AccessName_Find
	AccessName_FindApplTopic
	AccessName_GetInfo
	AccessName_GetName
	AccessName_GetUniqueName
	AccessName_New
	AccessName_SetInfo
	AccessName_SetName
	AlarmObj_New
	AnlgAlarmLnk_New
	AnlgColorLnk_New
	AnlgInputLnk_New
	AnlgOutputLnk_New
	AnlgTag_GetInfo
	AnlgTag_SetInfo
	BitmapObj_New
	BlinkLnk_New
	ButtonObj_New
	DisableLnk_New
	DiscAlarmLnk_New
	DiscColorLnk_New
	DiscInputLnk_New
	DiscOutputLnk_New
	DiscTag_GetInfo
	DiscTag_SetInfo
	DiscTouchLnk_New
	DllObj_New
	EllipseObj_New
	Font_Scale
	GroupObj_New
	HistTrendObj_New
	LineObj_New
	LocationLnk_New
	Obj_Delete
	OrientationLnk_New
	PctFillLnk_New
	Point_Scale
	PointArray_Scale
	PointReal_Scale
	PointRealArray_Scale
	PolygonObj_New
	PolylineObj_New
	RealTrendObj_New
	Rect_Scale
	RectangleObj_New
	RectReal_Scale
	RRectangleObj_New
	SizeLnk_New
	SliderLnk_New
	Stmt_New
	StmtTouchLnk_New
	StrInputLnk_New
	StrOutputLnk_New
	StrTag_SetInfo
	SymbolObj_New
	Tag_Find
	Tag_FindApplTopicItem
	Tag_GetAccessInfo
	Tag_GetGroup
	Tag_GetInfo
	Tag_GetRetentiveInfo
	Tag_GetUniqueName
	Tag_GetValueAlarm
	Tag_New
	Tag_SetAccessInfo
	Tag_SetDeviationAlarm
	Tag_SetDiscAlarm
	Tag_SetEventInfo
	Tag_SetGroup
	Tag_SetInfo
	Tag_SetRateOfChangeAlarm
	Tag_SetRetentiveInfo
	Tag_SetScalingInfo
	Tag_SetValueAlarm
	Text_GetExtent
	TextObj_New
	TrendObj_SetItem
	TrendObj_SetTimeInfo
	TrendObj_SetValueInfo
	VisibilityLnk_New
	WizardObj_New
	WizProp_Delete
	WizProp_Find
	WizProp_GetBlock
	WizProp_GetDouble
	WizProp_GetDWord
	WizProp_GetExpr
	WizProp_GetFont
	WizProp_GetStmt
	WizProp_GetString
	WizProp_New
	WizProp_SetBlock
	WizProp_SetDouble
	WizProp_SetDWord
	WizProp_SetExpr
	WizProp_SetFont
	WizProp_SetStmt
	WizProp_SetString
	WWDlg_CheckExprCtrl
	WWDlg_CheckTagCtrl
	WWDlg_GetDoubleCtrl
	WWDlg_ProcessKeyCtrl
	WWDlg_RegisterColorCtrl
	WWDlg_RegisterKeyCtrl
	WWDlg_RegisterTagNameCtrl
	WWDlg_ScriptEdit
	WWDlg_SetDoubleCtrl
	WWDlg_UnregisterColorCtrl
	WWDlg_UnregisterKeyCtrl
	WWDlg_UnregisterTagNameCtrl
	WWKit_GetKeyStatus
	WWKit_GetLastError
	WWKit_GetSerialNumber
	WWKit_Init
	WWKit_SetBrush
	WWKit_SetFont
	WWKit_SetPen
	WWKit_SetTextBrush
	WWKit_SetTextPen

	Chapter 7 - Wizard API Structures
	ACCESSNAMEINFO
	ANLGTAGINFO
	DEVALARMINFO
	DISCALARMINFO
	DISCTAGINFO
	ROCALARMINFO
	STRTAGINFO
	TAGACCESSINFO
	TAGEVENTINFO
	TAGINFO
	TAGRETENTIVEINFO
	TAGSCALEINFO
	VALALARMINFO

	Chapter 8 - Testing and Debugging Wizards
	Testing Guidelines for Wizards
	Testing a Newly Installed Wizard
	Testing Wizard Sizing
	Testing Wizard Editing Capabilities
	Testing Wizard Configurations
	Testing Toolbox Operations on a Wizard
	Special Wizard Tests

	Sending Debug Messages to the Wonderware Logger
	Using CodeView to Debug the Wizard DLL
	Using Visual C++ to Debug

	Chapter 9 - InTouch QuickScript Functions
	Getting Started with the Quick Script Toolkit
	Flags

	Pasting Functions and Arguments
	Highlighting Replacement Values

	Installing Your Script Extensions
	Sample Script

	Combining the QuickScript Functions with IDEA

	Chapter 10 - IDEA Toolkit
	Requirements
	IDEA Toolkit Contents

	Functional Description
	Special Data Types
	Access ID Handles (ACCID)
	Point Handles (HPT)
	Activating Variables
	InTouch Variable Types
	Reading InTouch Variables
	Writing InTouch Variables
	Detecting InTouch Exits
	Storing Program Data with Each HPT

	Tag Handles and Memory Usage
	Accessing Remote Tags
	Program Examples
	Example #1
	Example #2
	Example #3
	Example #4
	Example #5

	IDEA Programs in the Windows NT Environment
	InTouch Notification of Tag Changes
	PtAccActivateAndNotify and PtAccHandleActivateAndNotify
	PtAccActivateAndSendNotify and PtAccHandleActivateAndSndNotify

	Running IDEA Toolkit Samples
	Function Reference
	Function Summary
	PtAccACCIDFromHPT
	PtAccActivate
	PtAccActivateAndNotify
	PtAccActivateAndSendNotify
	PtAccDeactivate
	PtAccDelete
	PtAccGetExtraInt
	PtAccGetExtraLong
	PtAccHandleActivate
	PtAccHandleActivateAndNotify
	PtAccHandleActivateAndSndNotify
	PtAccHandleCreate
	PtAccHandleDeactivate
	PtAccHandleDelete
	PtAccInit
	PtAccOK
	PtAccReadA
	PtAccReadD
	PtAccReadI
	PtAccReadM
	PtAccReadR
	PtAccSetExtraInt
	PtAccSetExtraLong
	PtAccShutdown
	PtAccShutdownAllAssociated
	PtAccType
	PtAccWriteA
	PtAccWriteD
	PtAccWriteI
	PtAccWriteM
	PtAccWriteR

	Chapter 11 - ITEdit.OCX
	ITEdit Overview
	Registering ITEdit.OCX
	Installing ITEdit.OCX
	Configuring ITEdit.OCX
	ITEdit Properties
	Stock Properties

	Custom Properties
	IT ActivationMode Property
	ITDataIsValid Property
	ITFormat Property
	ITOffMessage Property
	ITOnMessage Property
	ITRunning Property
	ITTagName Property
	ITTagType Property
	ITValue Property
	ITValueQuality Property

	Events
	ITNotifyValue Event
	ITNotifyQuality Event
	Using ITNotifyValue and ITNotifyQuality

	Error Dialog Box

	Chapter 12 - Tag Access
	Tag Access ActiveX Objects for InTouch
	Requirements
	Deployment Information
	DataChange ActiveX Control
	Events
	Methods
	Trappable Errors

	TagLink Object
	Properties
	Dot Field Properties
	Trappable Errors

	Sample Applications
	Combining the DataChange Control and TagLink Object: An Example
	TagBrowser ActiveX Control
	Properties
	Methods
	Events

	Index

