

 Wonderware FactorySuite

InTouch Extensibility
Toolkit

 User’s Guide
 Revision B

 January, 2000

 Wonderware Corporation

 All rights reserved. No part of this documentation shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the
Wonderware Corporation. No copyright or patent liability is assumed with respect
to the use of the information contained herein. Although every precaution has been
taken in the preparation of this documentation, the publisher and author assume no
responsibility for errors or omissions. Neither is any liability assumed for damages
resulting from the use of the information contained herein.

 The information in this documentation is subject to change without notice and does
not represent a commitment on the part of Wonderware Corporation. The software
described in this documentation is furnished under a license or nondisclosure
agreement. This software may be used or copied only in accordance with the terms
of these agreements.

  2000 Wonderware Corporation. All Rights Reserved.

 100 Technology Drive
 Irvine, CA 92618
 U.S.A.
 (949) 727-3200
 http://www.wonderware.com

 Trademarks

 All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Wonderware Corporation cannot attest to the
accuracy of this information. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

 Wonderware, InTouch and FactorySuite Web Server are registered trademarks of
Wonderware Corporation.

 FactorySuite, Wonderware FactorySuite, WindowMaker, WindowViewer, SQL
Access Manager, Recipe Manager, SPCPro, DBDump, DBLoad, HDMerge,
HistData, Wonderware Logger, Alarm Logger, InControl, InTrack, InBatch,
IndustrialSQL, FactoryOffice, FactoryFocus, License Viewer, Scout, SuiteLink and
NetDDE are trademarks of Wonderware Corporation.

i

 Contents

 Chapter 1 - Introduction to the InTouch
Extensibility Toolkit... 1-1
 About the InTouch Extensibility Toolkit ..1-2
 Installing the InTouch Extensibility Toolkit ...1-4
 Hardware/Software Requirements ..1-4
 Windows 98 and Windows NT Compatibility ..1-4
 Developer Requirements...1-5
 Documentation Conventions...1-6

 Terms Used in this Document..1-6

 Chapter 2 - Getting Started with the Wizard
Toolkit .. 2-1
 What is a Wizard?...2-2
 The Components of a Wizard DLL...2-3

 Wizard Basics ..2-5
 Simple Wizard .DEF File Example ...2-7

 Building a Simple Wizard...2-8
 WIZARD.C File ..2-9
 Globals...2-11

 Integrating a Wizard into WindowMaker ...2-12
 Wizard_GetInfo Example ..2-14
 Simple Wizard .RC File Example..2-17
 Building the Wizard DLL..2-17
 Installing the Wizard in WindowMaker...2-17

 Wizard Libraries ...2-18
 Creating Libraries with Multiple Wizards ...2-19
 Naming Conventions ...2-21

 Building a Configurable Wizard ...2-22
 Special Wizard Dialog Controls ...2-31

 Wizard Toolkit Dialog Functions ..2-36

 Chapter 3 - Wizard Toolkit Functions 3-1
 Wizard DLL Standard Functions ..3-2
 Wizard API Functions ..3-3

 General Functions..3-3
 Object Functions..3-4
 Utility Functions ..3-6
 Link Functions ...3-7
 Wizard Property Functions ..3-8
 User Interface Functions..3-10
 Database Tag Functions...3-11

 Chapter 4 - User Supplied Wizard Functions4-1
 Functions Required to Create and Configure Wizards..4-2

 Wizard_New..4-2
 Wizard_Edit...4-3

ii Contents

 Functions Required to Integrate Wizards into InTouch.. 4-4
 Wizard_GetInfo... 4-4
 WizardLib_GetInfo ... 4-6

 Command Wizards ... 4-7
 Wizard_DoCommand.. 4-7

 Chapter 5 - Style Guide for Wizard Library
Development.. 5-1
 Guidelines for Wizard Library Development ... 5-2

 Creating Libraries with Multiple Wizards ... 5-2
 Wizard Library Directory .. 5-2
 Wizard C Modules... 5-3
 Function Names... 5-3
 WZMAIN.C... 5-3
 Header File .. 5-4
 Definition (.DEF) File ... 5-6
 Resource (.RC) File ... 5-6

 Chapter 6 - Wizard API Function Reference 6-1
 AccessName_Find ... 6-2
 AccessName_FindApplTopic.. 6-2
 AccessName_GetInfo .. 6-2
 AccessName_GetName ... 6-3
 AccessName_GetUniqueName.. 6-3
 AccessName_New... 6-4
 AccessName_SetInfo... 6-4
 AccessName_SetName.. 6-5
 AlarmObj_New ... 6-5
 AnlgAlarmLnk_New ... 6-8
 AnlgColorLnk_New .. 6-11
 AnlgInputLnk_New... 6-12
 AnlgOutputLnk_New .. 6-13
 AnlgTag_GetInfo... 6-13
 AnlgTag_SetInfo ... 6-14
 BitmapObj_New.. 6-14
 BlinkLnk_New .. 6-15
 ButtonObj_New... 6-16
 DisableLnk_New ... 6-17
 DiscAlarmLnk_New.. 6-18
 DiscColorLnk_New... 6-19
 DiscInputLnk_New.. 6-20
 DiscOutputLnk_New... 6-22
 DiscTag_GetInfo ... 6-22
 DiscTag_SetInfo.. 6-23
 DiscTouchLnk_New.. 6-23
 DllObj_New .. 6-25
 EllipseObj_New .. 6-26
 Font_Scale ... 6-27
 GroupObj_New ... 6-28
 HistTrendObj_New ... 6-29
 LineObj_New .. 6-31
 LocationLnk_New ... 6-32
 Obj_Delete .. 6-34
 OrientationLnk_New ... 6-35
 PctFillLnk_New... 6-36
 Point_Scale.. 6-38

Contents iii

 PointArray_Scale...6-40
 PointReal_Scale...6-42
 PointRealArray_Scale..6-44
 PolygonObj_New ..6-46
 PolylineObj_New ..6-46
 RealTrendObj_New...6-47
 Rect_Scale ...6-49
 RectangleObj_New..6-52
 RectReal_Scale..6-53
 RRectangleObj_New ...6-56
 SizeLnk_New ..6-57
 SliderLnk_New..6-59
 Stmt_New ..6-61
 StmtTouchLnk_New..6-62
 StrInputLnk_New ..6-63
 StrOutputLnk_New..6-64
 StrTag_SetInfo...6-65
 SymbolObj_New ...6-65
 Tag_Find..6-66
 Tag_FindApplTopicItem ...6-66
 Tag_GetAccessInfo ...6-67
 Tag_GetGroup...6-67
 Tag_GetInfo ..6-67
 Tag_GetRetentiveInfo ...6-68
 Tag_GetUniqueName ..6-68
 Tag_GetValueAlarm..6-68
 Tag_New ...6-69
 Tag_SetAccessInfo ..6-70
 Tag_SetDeviationAlarm ..6-71
 Tag_SetDiscAlarm ..6-71
 Tag_SetEventInfo ..6-71
 Tag_SetGroup..6-72
 Tag_SetInfo ...6-72
 Tag_SetRateOfChangeAlarm ..6-72
 Tag_SetRetentiveInfo ..6-73
 Tag_SetScalingInfo ...6-73
 Tag_SetValueAlarm ..6-73
 Text_GetExtent..6-74
 TextObj_New ..6-75
 TrendObj_SetItem ...6-76
 TrendObj_SetTimeInfo ...6-77
 TrendObj_SetValueInfo ..6-78
 VisibilityLnk_New ..6-79
 WizardObj_New..6-80
 WizProp_Delete ..6-81
 WizProp_Find..6-81
 WizProp_GetBlock..6-82
 WizProp_GetDouble ...6-83
 WizProp_GetDWord ...6-84
 WizProp_GetExpr ...6-85
 WizProp_GetFont..6-86
 WizProp_GetStmt..6-87
 WizProp_GetString ...6-88
 WizProp_New ...6-89
 WizProp_SetBlock ..6-90

iv Contents

 WizProp_SetDouble.. 6-90
 WizProp_SetDWord.. 6-91
 WizProp_SetExpr.. 6-91
 WizProp_SetFont .. 6-92
 WizProp_SetStmt .. 6-93
 WizProp_SetString .. 6-93
 WWDlg_CheckExprCtrl ... 6-94
 WWDlg_CheckTagCtrl ... 6-95
 WWDlg_GetDoubleCtrl.. 6-96
 WWDlg_ProcessKeyCtrl... 6-96
 WWDlg_RegisterColorCtrl ... 6-97
 WWDlg_RegisterKeyCtrl.. 6-98
 WWDlg_RegisterTagNameCtrl... 6-99
 WWDlg_ScriptEdit ... 6-99
 WWDlg_SetDoubleCtrl... 6-100
 WWDlg_UnregisterColorCtrl.. 6-100
 WWDlg_UnregisterKeyCtrl .. 6-101
 WWDlg_UnregisterTagNameCtrl ... 6-102
 WWKit_GetKeyStatus .. 6-102
 WWKit_GetLastError ... 6-103
 WWKit_GetSerialNumber .. 6-104
 WWKit_Init... 6-105
 WWKit_SetBrush.. 6-105
 WWKit_SetFont .. 6-105
 WWKit_SetPen ... 6-106
 WWKit_SetTextBrush .. 6-106
 WWKit_SetTextPen.. 6-106

 Chapter 7 - Wizard API Structures 7-1
 ACCESSNAMEINFO ... 7-2
 ANLGTAGINFO... 7-2
 DEVALARMINFO ... 7-3
 DISCALARMINFO .. 7-4
 DISCTAGINFO .. 7-4
 ROCALARMINFO ... 7-5
 STRTAGINFO .. 7-5
 TAGACCESSINFO... 7-6
 TAGEVENTINFO .. 7-6
 TAGINFO ... 7-7
 TAGRETENTIVEINFO.. 7-7
 TAGSCALEINFO... 7-8
 VALALARMINFO ... 7-9

 Chapter 8 - Testing and Debugging Wizards..... 8-1
 Testing Guidelines for Wizards .. 8-2

 Testing a Newly Installed Wizard ... 8-2
 Testing Wizard Sizing ... 8-3
 Testing Wizard Editing Capabilities.. 8-4
 Testing Wizard Configurations.. 8-5
 Testing Toolbox Operations on a Wizard.. 8-6
 Special Wizard Tests ... 8-7

 Sending Debug Messages to the Wonderware Logger ... 8-8
 Using CodeView to Debug the Wizard DLL.. 8-9
 Using Visual C++ to Debug.. 8-10

Contents v

 Chapter 9 - InTouch QuickScript Functions9-1
 Getting Started with the QuickScript Toolkit..9-2

 Flags ..9-5
 Pasting Functions and Arguments...9-6

 Highlighting Replacement Values ...9-6
 Installing Your Script Extensions ...9-7

 Sample Script...9-7
 Combining the QuickScript Functions with IDEA..9-9

 Chapter 10 - IDEA Toolkit.................................. 10-1
 Requirements ..10-2

 IDEA Toolkit Contents..10-3
 Functional Description..10-4

 Special Data Types ..10-5
 Access ID Handles (ACCID)...10-6
 Point Handles (HPT) ...10-6
 Activating Variables ..10-7
 InTouch Variable Types ..10-7
 Reading InTouch Variables ...10-8
 Writing InTouch Variables ..10-8
 Detecting InTouch Exits ..10-8
 Storing Program Data with Each HPT...10-9

 Tag Handles and Memory Usage..10-11
 Accessing Remote Tags ..10-13
 Program Examples ..10-14

 Example #1 ..10-14
 Example #2 ..10-15
 Example #3 ..10-16
 Example #4 ..10-19
 Example #5 ..10-19

 IDEA Programs in the Windows NT Environment...10-20
 InTouch Notification of Tag Changes...10-21

 PtAccActivateAndNotify and PtAccHandleActivateAndNotify................10-21
 PtAccActivateAndSendNotify and PtAccHandleActivateAndSndNotify..10-22

 Running IDEA Toolkit Samples ...10-25
 Function Reference ...10-26

 Function Summary...10-26
 PtAccACCIDFromHPT...10-28
 PtAccActivate ..10-29
 PtAccActivateAndNotify ...10-30
 PtAccActivateAndSendNotify ...10-31
 PtAccDeactivate ..10-32
 PtAccDelete ...10-32
 PtAccGetExtraInt...10-33
 PtAccGetExtraLong...10-34
 PtAccHandleActivate...10-35
 PtAccHandleActivateAndNotify..10-36
 PtAccHandleActivateAndSndNotify ...10-37
 PtAccHandleCreate..10-38
 PtAccHandleDeactivate ...10-39
 PtAccHandleDelete..10-39
 PtAccInit..10-40
 PtAccOK..10-41
 PtAccReadA ..10-41
 PtAccReadD ..10-42
 PtAccReadI..10-43
 PtAccReadM..10-44

vi Contents

 PtAccReadR .. 10-45
 PtAccSetExtraInt ... 10-46
 PtAccSetExtraLong ... 10-47
 PtAccShutdown ... 10-48
 PtAccShutdownAllAssociated... 10-48
 PtAccType ... 10-49
 PtAccWriteA ... 10-50
 PtAccWriteD ... 10-51
 PtAccWriteI... 10-52
 PtAccWriteM... 10-53
 PtAccWriteR ... 10-54

 Chapter 11 - ITEdit.OCX.................................... 11-1
 ITEdit Overview ... 11-2
 Registering ITEdit.OCX ... 11-2
 Installing ITEdit.OCX .. 11-3

 Configuring ITEdit.OCX... 11-3
 ITEdit Properties ... 11-5
 Stock Properties... 11-5

 Custom Properties... 11-6
 ITActivationMode Property .. 11-6
 ITDataIsValid Property ... 11-9
 ITFormat Property ... 11-9
 ITOffMessage Property ... 11-9
 ITOnMessage Property.. 11-9
 ITRunning Property... 11-9
 ITTagName Property... 11-10
 ITTagType Property .. 11-10
 ITValue Property... 11-10
 ITValueQuality Property ... 11-10

 Events ... 11-11
 ITNotifyValue Event ... 11-11
 ITNotifyQuality Event... 11-11
 Using ITNotifyValue and ITNotifyQuality ... 11-11

 Error Dialog Box .. 11-12

 Chapter 12 - Tag Access................................... 12-1
 Tag Access ActiveX Objects for InTouch .. 12-2
 Requirements .. 12-3
 Deployment Information... 12-4
 DataChange ActiveX Control ... 12-5

 Events .. 12-6
 Methods ... 12-7
 Trappable Errors.. 12-9

 TagLink Object... 12-10
 Properties... 12-11
 Dot Field Properties... 12-14
 Trappable Errors.. 12-17

 Sample Applications ... 12-17
 Combining the DataChange Control and TagLink Object: An Example 12-18
 TagBrowser ActiveX Control ... 12-20

 Properties... 12-20
 Methods ... 12-26
 Events .. 12-26

 Index.. I-1

1-1

C H A P T E R 1

Introduction to the InTouch
Extensibility Toolkit

The Wonderware InTouch Extensibility Toolkit is designed to allow a
proficient Windows C/C++ programmer to expand, customize, and add new
functionality and capabilities to the InTouch development or run-time environments.
By offering powerful development tools, and combining them in an open InTouch
environment, the Toolkit allows the creation of more powerful, user specific
applications than otherwise possible.

Contents
n About the InTouch Extensibility Toolkit

n Installing the InTouch Extensibility Toolkit

n Hardware/Software Requirements

n Windows 98 and Windows NT Compatibility

n Developer Requirements

n Documentation Conventions

1-2 Chapter 1

 About the InTouch Extensibility
Toolkit

By using the InTouch Extensibility Toolkit, a developer can create Wizards, build
custom script functions, and access the InTouch database from other programs
through standard APIs or OCXs. Outside programs can be quickly linked in, and
custom DLLs can be simply created and utilized.

The following briefly describes each major section contained in the InTouch
Extensibility Toolkit:

• Wizard Software Development Toolkit

 The Wizard Toolkit provides the developer with the ability to create libraries of
wizards that will integrate into the InTouch environment and provide InTouch
application developers with a higher level of productivity. Wizards are created
to extend the InTouch functionality for a set of specific applications, or for
general InTouch development.

• InTouch Script Functions Software Development Toolkit

 Script functions can be developed with the Script Functions Toolkit for use
within InTouch. These functions are able to utilize a rich set of conditional
statements, functions, and data operators available in the C and C++
programming languages. The completed function(s) are integrated with the
development environment (WindowMaker) so that they appear in the script
function selection dialog box. Scripts can be initiated by data change, pre-
defined conditions and/or operator action. Scripts may also run in the
background of the application or based on a window being active.

• IDEA Software Development Toolkit

 The IDEA (InTouch Database External Access) Toolkit provides developers
with a means of directly accessing data in the InTouch tagname database. IDEA
supports the following:

• Developers who wish to produce separate Windows programs that access
and/or change InTouch data

• Developers of InTouch script functions, who wish to read/write InTouch
data from a script function that resides in a DLL

• Programs written in C/C++ and Microsoft Visual Basic™

Introduction to the InTouch Extensibility Toolkit 1-3

• ITEdit OLE Control

 ITEdit.OCX is a 32-bit control that can be used in Visual Basic or any other
OLE container that provides support for OLE controls. In Visual Basic,
InTouch data can be read and written using ITEdit. Only tagnames and access
modes need to be defined in Visual Basic. ITEdit provides an event mechanism
that responds to tagname value changes in InTouch and monitors whether or
not InTouch is running. Also, there is no limitation on the number of
applications can access InTouch's database concurrently. ITEdit functionality is
provided via the newly created class CIdea, which is a C++ wrapper around the
functionality provided within PTACC DLL. It provides access to these features
without having to learn the intricacies of PTACC.

• Tag Access ActiveX Objects

 Tag Access ActiveX objects provide developers using Microsoft Visual Basic's
rapid application development (RAD) tools with the ability to quickly deploy
applications that link to the InTouch runtime database. Tag Access is a set of
components for anyone planning to integrate InTouch with Visual Basic, plus a
set of utility applications and components. Because they utilize standard
ActiveX technologies, these tools are also useful in any of the Microsoft
Office™ applications as they can be used from within Visual Basic for
Applications (VBA) to expose an InTouch tag database object model. These
tools can be used to develop extensions to InTouch in a variety of ways:

• Develop stand-alone applications that integrate with InTouch, such as
custom data loggers, setpoint downloading, statistical/advanced numerical
analysis, custom InTrack clients, and so on.

• Create ActiveX servers that can be called from within the InTouch
scripting environment, allowing Visual Basic to be used for the application
scripting.

• Embedded into other ActiveX controls, enabling them to be used in the
creation of custom ActiveX control objects such as special types of
animations, charts, or user interface objects that can be used in InTouch or
Visual Basic and are bound to data in the InTouch tagname dictionary.

1-4 Chapter 1

 Installing the InTouch Extensibility
Toolkit

 The InTouch Extensibility Toolkit software package is distributed on a compact
disc which runs on the Microsoft Windows 98 and Windows NT (4.0 or later)
operating systems. The installation program creates directories as needed, copies
files from the CD to your hard drive, and creates the InTouch icons on the Windows
Start menu.

 Hardware/Software Requirements
 The following hardware and software is required to use any of the components
contained in this toolkit:

• IBM-compatible PC capable of running the Windows 98 or Windows NT 4.0
operating system

• Memory recommendation of at least 16 MB, preferably 32 MB on Windows 98
and upwards of 64 MB to 128 MB if running on Windows NT

• InTouch 7.1 (or later) for Windows 98, or InTouch 7.1 (or later) for Windows
NT 4.0 with Service Pack 5

• Windows 98 or Windows NT Software Development Kit (SDK), if not using
Microsoft Visual C++

• C or C++ Development Environment capable of creating Windows Dynamic
Link Libraries (DLLs). For example, Microsoft Visual C++ Version 6.0 with
Service Pack 3

Note In order to completely support wizard development, we recommend the use of
Microsoft Visual C++ Version 6.0 with Service Pack 3.

 Windows 98 and Windows NT
Compatibility

 The InTouch Extensibility Toolkit supports both the Windows 98 and Windows NT
environments. It is possible to develop Wizards, Script functions, and IDEA support
that is compatible with Windows 98 and Windows NT. The InTouch Extensibility
Toolkit includes samples and development files that make it possible to develop
code that is common to both Windows platforms.

The toolkit user should follow Microsoft guidelines for developing Windows 98 and
Windows NT compatible source code.

InTouch Extensibility Toolkit Version 7.1 (or later) only supports development of
32-bit executables (DLL or EXE) on Windows 98 and Windows NT.

Introduction to the InTouch Extensibility Toolkit 1-5

 Developer Requirements
 This manual is written for experienced Windows C/C++ programmers. It assumes
that you possess basic Windows application development knowledge and are
familiar with the InTouch software. The basic skills and any specific requirements
for a user of this toolkit are briefly described as follows:

• C or C++ Programming

 The InTouch Extensibility Toolkit currently supports the C and C++
programming languages. The functions specifically provided in the Wizard
Toolkit API allow you to develop wizards that have the same "look and feel" as
all other InTouch objects. In order to support a common interface for all
wizards, standard tools such as color, font and tagname selection dialog boxes
can be accessed from the wizard dialog boxes by simply calling Wizard Toolkit
API functions.

• Basics of Windows Application Development

 The developer must possess basic knowledge of Windows application
development such as, how to develop a dialog box. Sample wizards are
provided in the Wizard Toolkit that can be used as templates when you start
your wizard development. You also need to know the fundamentals of creating
a Windows DLL, since wizards are added to the InTouch environment through
the DLL mechanism.

• Constructing Cells in InTouch for Prototyping

 A Wizard developer needs to become familiar with prototyping wizards in
InTouch.

 For more information on prototyping wizards, see Chapter 2, "Getting Started
with the Wizard Toolkit."

 All of the objects (database tagnames, drawing objects and animation links)
created or manipulated with the Wizard Toolkit are objects available directly in
WindowMaker. The following briefly describes prototyping:

When the Wizard Toolkit is installed, the Generate Wizard command is
automatically added to the WindowMaker Special menu. (We highly recommend
that you use this command to automatically generate the code for your wizards.) By
using this command, you can prototype the wizards you create using InTouch.

To prototype a wizard, you simply create the desired object in WindowMaker
(using the standard tools), associate the object to a database tagname, assign the
desired animation links, and so on, then make the object into a cell. Once the object
has been made into a cell, select the cell and then select the Generate Wizard
command. Selecting this command will create a file named WIZARD.C in your
InTouch application directory.

The WIZARD.C file contains the Windows code required to re-create that cell. This
code must be compiled and linked with the other required routines to form a DLL.
Windows standard DLLs provide the mechanism to add wizards to the InTouch
environment.

Note We recommend the latest edition of the book Programming Windows by
Charles Petzold for those unfamiliar with Windows programming.

1-6 Chapter 1

 Documentation Conventions
 The following conventions are used throughout this manual to define syntax:
Convention Description

Bold Text Denotes a function name, for example,
Wizard_New

Italic text Denotes a parameter value, for example,
wCommand

CAPITALS Indicates return type (or most return types) also
filenames and paths.

Courier 9 Code Examples and Syntax spacing
samples.

 Terms Used in this Document
Term Definition

Wizard Developer Proficient Windows C Programmer; person
developing the code for the wizard.

InTouch application
developer

Person using the wizards after they have been
developed and installed in InTouch
WindowMaker.

User Same as InTouch application developer.

2-1

C H A P T E R 2

Getting Started with the Wizard
Toolkit

 The Wizard Toolkit contains tools and information necessary to develop a Wizard
of any kind. The included sample source code provides a good starting point for a
Wizard developer. The Wizard Toolkit also provides the Wizard developer with
utilities to create individual Wizards that can be packaged for distribution with the
InTouch family of products.

 Wizards are implemented by using a set of Application Programming Interfaces
(API) provided by the Wizard Toolkit. The Wizard Toolkit API contains numerous
functions for manipulating and creating InTouch objects and database entries
including, tagnames, Access Names and Alarm Groups.

This chapter is a tutorial for new Wizard developers. Its objective is to allow you,
the Wizard developer, to quickly familiarize yourself with the basics of Wizard
development. This tutorial will take you through the development process required
to create your first Wizard, including all of its required components. You will learn
how to put multiple Wizards in a "library," to make your Wizards configurable and
how to change the properties of your Wizards, such as blink speed, location links,
size and color links, and so on.

Contents
n What is a Wizard?

n The Components of a Wizard DLL

n Building a Simple Wizard

n Integrating a Wizard into WindowMaker

n Wizard Libraries

n Building a Configurable Wizard

n Special Wizard Dialog Controls

2-2 Chapter 2

 What is a Wizard?
 Before Wizards were introduced, the InTouch application developer created objects
on the screen by using the primitive WindowMaker tools. The developer then
double-clicked on the object to associate animation links, such as a Value Output, a
Color Fill, or a Blink Link to the object. When desired, logic scripts were also
attached to the object for more in-depth control. The application developer might
then group several objects together into a cell to create a "boilerplate" that could be
used again and again. This process worked well, but it had its limitations. Wizards
can now erase those limitations and automate the entire process for the InTouch
application developer!

 Wizards, in their most basic element, could be referred to as "smart objects" that
make InTouch application development easier and more efficient. When using a
Wizard, you are activating a set of pre-programmed actions that can create or
manipulate standard InTouch objects (symbols and cells), primitives (lines,
rectangles, buttons, and so on.) and database entries (tagnames, Access Names). All
the InTouch application developer needs to do is select and configure the Wizard --
InTouch will draw it, animate it and define it if need be!

 To use a Wizard, the InTouch application developer simply selects it from the
toolbar, places it on the screen, and configures it by double-clicking on it and
entering values into a standard Windows dialog box. For example, if the Wizard
were a slider, its configuration dialog box would include items such as the tagname,
the min. and max. range labels, the slide movement, fill color, and so on. Once this
information is entered in the dialog box and you click OK, the Wizard is redrawn
(automatically) and the slider is now ready to be used in WindowViewer . It's that
simple! The InTouch application developer is not responsible for drawing the
individual components that make up the slider. The developer is not responsible for
typing in the value ranges on the object. The developer is not responsible for
animating the object(s). It's all done automatically!

 It is the Wizard developer who determines what actually happens when an InTouch
application developer uses a Wizard (and makes its all seem automatic). The
Wizard developer creates a DLL file that contains the functions and procedures that
draw the lines, circles, and text necessary to create the object. WindowMaker calls
this DLL when the Wizard is selected and again when it's configured. The Wizard
DLL controls all the drawing and all the editing. The Wizard Toolkit provides over
60 API functions that may be utilized by the Wizard developer to do this.

 For more information on the API functions, see Chapter 6, "Wizard API
Reference."

Getting Started with the Wizard Toolkit 2-3

 The Components of a Wizard DLL
Wizards can vary in complexity and functionality. The simplest Wizard to create is
a graphical object that is scaleable. A complex Wizard can involve sizable text,
scripts, tagname creation, and contain properties that actually affect the extent of the
Wizard itself. All Wizards contain a minimum set of components, and therefore all
Wizard DLLs must contain a base set of functions. These base functions include
both those components necessary to make the program a Windows DLL and those
necessary to make it a Wizard DLL. The following briefly describes the Windows
components.

 There are usually three files that are compiled together to make up a 32-bit
Windows DLL, as shown in the following illustration:

 The three files include:
 WZMAIN.C Provides the DllMain (Library's main entry point) function.

 WIZARD.RC Provides resources (Dialogs, Bitmaps, and Strings).

 WIZARD.DEF Defines exports (HEAPSIZE, LIBRARY, and so on).

 These files provide a basic Windows DLL. Since this is a DLL, inside the
WZMAIN.C file, we must supply a DLL entry function (DLLMain for 32-bit
Windows).

 DIIM

 WIZARD.RC (Resources)

• Dialogs

• Strings

 WZMAIN.C

 WEP

 WIZARD.DEF (Definitions)

• Exports

• Who Am I?

2-4 Chapter 2

 The following DLLMain should be used in Windows NT (32-bit) to perform the
appropriate initialization for use with WindowMaker.

int
WINAPI
DllMain(HANDLE hInstance, DWORD ul_reason_being_called,
LPVOID lpReserved)
{
 switch(ul_reason_being_called) {
 case DLL_PROCESS_ATTACH:
 // Initialize needed globals
 hDrawInst = hInstance;
 hDrawWnd = FindWindow("Wmak Class", NULL);
 break;
 case DLL_THREAD_ATTACH:
 break;
 case DLL_PROCESS_DETACH:
 break;
 case DLL_THREAD_DETACH:
 break;
 default:
 break;
 }

 return TRUE;
}

 Next, we need to include the functions that make this a wizard DLL. To understand
these functions, we need to discuss what is going on when wizards are used by the
InTouch application developer while drawing in WindowMaker.

Getting Started with the Wizard Toolkit 2-5

 Wizard Basics
 To WindowMaker, a Wizard is like any other native object (rectangle, ellipse, line,
and so on) in that the application developer will want to place it on a window, size
it, animate it, and click on Undo to correct a mistake made with it. The difference
between a native object and a Wizard is that instead of WindowMaker actually
doing these things, WindowMaker will call the Wizard DLL to do them. To support
these operations, the Wizard developer must provide specific functions within the
Wizard DLL.

 In general, WindowMaker will expect the following services (Modes) from the
Wizard DLL:
Mode Application Developer Action

NEW Placed a new Wizard on the window.

SIZE Dragged the handles on the Wizard to resize it, either bigger
or smaller.

EDIT Double-clicked on the Wizard to make changes in its
appearance or the way it was animated.

RESTORE Selected the Undo command on the Edit menu to reverse
the last action performed on the Wizard.

 In addition, WindowMaker will also expect the Wizard DLL to provide descriptive
information about the Wizard (bitmap pictures, text descriptions, version numbers,
and so on). WindowMaker then uses this information in its Wizard Selection
Dialogs and Wonderware Logger entries. The Wizard DLL accommodates
information requests by providing functions that support certain information
commands. Examples of these are listed in the following table:

Note This is not a complete list of the information commands that the Wizard will
need to support. The list is included here only as an example. The exact details are
covered later in the manual.

Information Command Description

WIZ_DESCRIPTION Long Description and Short Comment that are
used in the Wizard Selection Dialog and the
Toolbox.

WIZ_BITMAP Large (64x64) bitmap that is used in the Wizard
Selection Dialog.

WIZ_TBOXBITMAP Small (16x16) bitmaps to be used when creating
a button for the Wizard in the toolbar.

WIZ_GROUPNAME Name of the group in the Wizard Selection
Dialog where the Wizard will reside.

WIZ_FLAGS An indicator of what type of Wizard this is.

2-6 Chapter 2

 To support the Modes and Information Commands, a typical Wizard DLL is
structured as follows:

1. When WindowMaker needs to retrieve information about the Wizard (bitmaps,
descriptions, help files, and so on.) it will call one of two specific functions in
the Wizard DLL; Wizard_GetInfo or WizardLib_GetInfo. WindowMaker
then passes the particular Information Command it is looking for to the Wizard.
(These Information Commands include those in the list previously discussed.
For example, WIZ_DESCRIPTION, WIZ_BITMAP.) The Wizard developer
needs to provide the Wizard_GetInfo and WizardLib_GetInfo functions, and
place these in the WZMAIN.C file.

 Wizard_GetInfo and WizardLib_GetInfo will then load bitmaps or strings
from the Wizard DLL's resources (specified in the WIZARD.RC file).

2. When the InTouch application developer selects a particular Wizard from the
toolbar and places it in a window, WindowMaker considers this Wizard to be
in the NEW mode. To handle the processing of a NEW mode Wizard,
WindowMaker calls the Wizard_New function in the Wizard DLL.
Wizard_New is then responsible for "drawing" and "placing" the Wizard in the
window. Wizard_New may include the Wizard API routines that actually
"draw" the Wizard or it may dispatch another routine to do it.

 DllMain

 WZMAIN.C
 WIZARD.DEF

 WIZARD.RC

 WIZARD.C

 Wizard-New

 Wizard-GetInfo

 WizardLib-GetInfo

 BITMAP

 STRINGTABLE

 NEW
 Information

 1. 2.
 WindowMaker

 LINKER INFO

Getting Started with the Wizard Toolkit 2-7

 When the InTouch application developer resizes a Wizard, WindowMaker
considers this Wizard to be in the SIZE mode. To handle the processing of a SIZE
mode Wizard, WindowMaker will again call the Wizard_New function.
Wizard_New in this case is responsible for redrawing the Wizard at the new size or
dispatching a routine to size it. The Wizard developer is responsible for providing
the Wizard_New function (and the dispatching routines). This function will
normally be placed in a file called WIZARD.C. The dispatch routines (if they exist)
would normally reside in separate source files.

 For more information on dispatching, see the "Creating Libraries with Multiple
Wizards" later in this chapter.

Note The Wizard developer does not have to write all the Wizard_New drawing
code from scratch. Once the InTouch Extensibility Toolkit has been installed on the
developer's PC, a new menu command, Generate Wizard, will automatically be
added to the WindowMaker Special menu. By using this command, the Wizard
developer can select a cell in WindowMaker then invoke the command to
automatically generate the code. WindowMaker will create the WIZARD.C file and
put a Wizard_New function inside.

We strongly recommend before you begin developing Wizards, that you take the
time to familiarize yourself with Wizard naming conventions. It is not mandatory
that you follow these guidelines, but putting them into practice will make it easier to
maintain and properly organize your Wizard libraries.

For information on Wizard naming conventions, see Chapter 5, "Style Guide
for Wizard Library Development."

 Simple Wizard .DEF File Example
 Now that we have diagrammed what a simple Wizard DLL looks like, we can create
our WIZARD.DEF definition file. The definition file contains information about the
library, and, most importantly, the names of any Windows routines that must be
exported. (Any routine that is called from outside the DLL must be in the export
section.) In the case of a Wizard DLL, the functions that must be exported are those
that are called from WindowMaker, like Wizard_New, Wizard_GetInfo, and
WizardLib_GetInfo.
LIBRARY wzsample
DESCRIPTION 'WIZARD Toolkit Sample DLL'
''
EXPORTS
 Wizard_New
 Wizard_GetInfo
 WizardLib_GetInfo

2-8 Chapter 2

 Building a Simple Wizard
 In this section, we are going to develop a simple Wizard and see how all of the
pieces fit together. The simplest Wizard to create is a scaleable object with no text.
Let's start prototyping our Wizard in InTouch by creating an object.

1. Start WindowMaker and create a new window by selecting the New Window
command on the File menu.

2. Draw a rounded-rectangle using the standard WindowMaker tool.

3. Double-click on the object to access the animation links selection dialog box.
Click on the Blink button in the Miscellaneous section to assign a blink link to
the object. The Object Blinking -> Discrete Value dialog box will appear.

4. Enter a Discrete tagname in the Expression - Blink When field and then click
OK.

5. Transfer to WindowViewer and change the value of Discrete to make sure the
object is functioning as we would expect it to. Then switch back to
WindowMaker.

6. Select the object again and then, on the Arrange menu, select Make Cell to
turn the object into a cell:

7. With the cell still selected, on the Special menu, select Generate Wizard to
automatically generate the code for the Wizard.

 The generated code is now contained in the WIZARD.C file. The WIZARD.C file,
along with the other files provided in the Wizard Toolkit, will be the basis for our
simple Wizard.

Getting Started with the Wizard Toolkit 2-9

 WIZARD.C File
 When you select the Generate Wizard command on the Special menu, the C code
for the Wizard_New function is automatically written to the WIZARD.C file in
your InTouch application directory. The WIZARD.C file contains only the code
necessary to re-create that cell. This code must be compiled and linked with the
other required functions to make a Wizard DLL.

Note The other routines that are required to link with WIZARD.C are contained in
the WZMAIN.C, WIZARD.RC, and WIZARD.DEF. These files are diagrammed in
the previous section, "The Components of a Wizard DLL."

For more information on these routines, see the next section, "Integrating a Wizard
into WindowMaker."

 Our example Wizard_New routine first calls WWKit_Init to initialize the Wizard
library. Then the code sets the pens and brushes that will be used in drawing the
object, sets any animation links that were assigned to the InTouch cell, and draws
the object. All of these actions are performed by the Wizard API. (The Windows
GDI routines are not used.)
#include <windows.h>
#include "wizapi.h"
#include "wizstub.h"

int FAR PASCAL Wizard_New(
 HCHUNK hChunk,
 int index,
 int left,
 int top,
 int right,
 int bottom,
 LPSTR dllName,
 WHMEM whData,
 int mode,
 RECT prevRect,
 WHMEM FAR *pwhWizard)
{
 WHMEM whHLObj;
 WHMEM whObj;
 RECT oldRect;
 RECT newRect;

 WWKit_Init();
 SetRect(&oldRect, 419, 19, 581, 91);

 if(left == right && top == bottom) {
 right = left + oldRect.right - oldRect.left;
 bottom = top + oldRect.bottom - oldRect.top;
 }
 SetRect(&newRect, left, top, right, bottom);
 whHLObj = WizardObj_New(hChunk, (WHMEM) 0, left, top,
 right, bottom, dllName, index, whData);
 wizPen.lopnStyle = 0;
 wizPen.lopnWidth.x = 1;
 wizPen.lopnWidth.y = 1;

Continued

2-10 Chapter 2

 wizPen.lopnColor = RGB(0x00, 0x00, 0x00);
 WWKit_SetPen(&wizPen);
 wizBrush.lbStyle = 0;
 wizBrush.lbColor = RGB(0xff, 0xff, 0xff);
 wizBrush.lbHatch = 4;
 WWKit_SetBrush(&wizBrush);

 SetRect(&tmpRect1, 420, 20, 580, 90);
 Rect_Scale(&tmpRect1, &oldRect, &newRect, 0);

 whObj = RRectangleObj_New(hChunk, whHLObj,
 tmpRect1.left, tmpRect1.top, tmpRect1.right,
 tmpRect1.bottom, 20, 20);

 lstrcpy(parseBuf, "Discrete");

 BlinkLnk_New(hChunk, whObj, parseBuf, FALSE,
 RGB(0x00, 0x00, 0x00), RGB(0x00, 0x80, 0x40),
 RGB(0x00, 0x00, 0x00), BLINK_MEDIUM);

 *pwhWizard = whHLObj;
 return 0;
}

 For more information on the functions used in the code sample, see the "Wizard
Toolkit Functions" section of Chapter 3.

Getting Started with the Wizard Toolkit 2-11

 Globals
 Declarations for the following globals are provided in a special header file called
WIZSTUB.H. They are used by the generated routines and provide useful structures
and variables when building non-generated Wizards. The initialization for these
global variables is often done in WZMAIN.C or in a extra add-on source file named
WZSTUB.C. For our simple Wizard, the globals would be as follows:
#include <windows.h>
#include "wizbase.h"

// Globals for wizard dialogs and access to resources

 HANDLE hDrawInst = (HANDLE)NULL;
 HWND hDrawWnd = (HWND)NULL;

// General purpose globals

 WHMEM whNull = (WHMEM) 0;
// Globals for object creation/manipulation

 HANDLE hBitmap;
 char tmpBuf[132];
 POINT tmpPt1;
 POINT tmpPt2;
 POINT tmpPts[32];
 RECT tmpRect1;
 RECT tmpRect2;

 LOGFONT wizFont = { 10, 0, 0, 0, FW_NORMAL,0, 0,
0,
 ANSI_CHARSET, OUT_STROKE_PRECIS, CLIP_STROKE_PRECIS,
 DRAFT_QUALITY, DEFAULT_PITCH|FF_SWISS, "Arial" };

 LOGBRUSH wizBrush = { BS_SOLID, RGB(0xff,
0xff,0xff),
 HS_CROSS };

 LOGPEN wizPen = { PS_SOLID, { 1, 1 }, 0L };

 LOGBRUSH wizTextBrush= { BS_SOLID, RGB(0xff, 0xff,
 0xff), HS_CROSS };

 LOGPEN wizTextPen = { PS_SOLID, { 1, 1 }, 0L };

// Globals for link creation/manipulation

 int errorCol;
 char parseBuf[STMT_STRLEN];
 EXPR stmtDown;
 EXPR stmtUp;
 EXPR stmtWhile;
 LONG tmpColors[5];
 REAL tmpValues[4];

2-12 Chapter 2

 Integrating a Wizard into
WindowMaker

 Once we have created our simple Wizard and generated the WIZARD.C file, we are
ready to integrate it into a full Wizard DLL. Before we can do this we need to
supply:

l A Bitmap for the Wizard Selection dialog box

l Bitmaps for the WindowMaker toolbar

l A group description

l Information regarding sizing of the Wizard

l Information regarding what environment our Wizard operates in

 WindowMaker will get this information by calling the DLL's Wizard_GetInfo
function several times. (If there is nothing to return, Wizard_GetInfo can return
zero and the defaults will be assumed.)

 The function prototype for Wizard_GetInfo is the following:
BOOL WINAPI Wizard_GetInfo(
 int index,
 WORD wCommand,
 DWORD dwData,
 LPVOID lpInfo)

 For more information on this function, see the "User Supplied Wizard Functions"
section of Chapter 4.

 The following briefly describes each parameter:
Parameter Description

index Refers to the index number of a particular
Wizard in a library. For our simple Wizard
this will be 1.

wCommand Specifies which property WindowMaker is
requesting information about. This is the
Information Command described in "The
Components of a Wizard DLL" section.

dwData This DWORD may contain additional data
that is required for the information request.

lpInfo Pointer to the returned data.
Wizard_GetInfo provides the information
back to WindowMaker by attaching this
pointer to it.

 The wCommand parameter specifies which property is being requested. Through
this one function, WindowMaker will request bitmap handles, description strings,
environment information, sizing information and so on.

Getting Started with the Wizard Toolkit 2-13

 The values requested in wCommand and the required actions are:
Command Required Action

WIZ_DESCRIPTION Returns either the Long Description or the
Short Comment description string, based on
the value of the dwData parameter which was
passed in.

WIZ_BITMAP Returns the main Wizard Selection Dialog
bitmap.

WIZ_TBOXBITMAP Returns either the Toolbox Button Down or
the Toolbox Button Up bitmap, based on the
value of the dwData parameter which was
passed in.

WIZ_GROUPNAME Returns the string name of the Wizard
Selection Dialog group where this Wizards
will appear.

WIZ_FLAGS Returns a flag indicating what type of
Wizards this is.

WIZ_SIZEMODE Returns a flag indicating what sizing
restrictions there are (if any) on this Wizard.

 For more information on these commands, see the "Functions Required to Integrate
Wizards into InTouch" section of Chapter 4.

 To supply bitmaps for the Wizard, there are three bitmaps needed:

l 64x64 bitmap for the Wizard Selection Dialog

l 16x16 bitmap for the WindowMaker toolbar when the button is up

l 16x16 bitmap for WindowMaker toolbar when the button is pressed

Note The pair of bitmaps used in the WindowMaker toolbar must be identical,
except the fill for the button up should be "buttonface" gray and the fill for the
button down (pressed) should be white. (WindowMaker will automatically create
the 3-D border.) The bitmap you provide should also not be shifted over and down.
WindowMaker will handle the "pressed down" effect automatically when the button
is depressed.

2-14 Chapter 2

 Wizard_GetInfo Example
 For our simple Wizard, the Wizard_GetInfo function would be:
/*
** Wizard_GetInfo:
**
** Handles calls to get information about a Wizard.
**
** Inputs:
** index - used only if we are
** implementing a wizard library in which
** case this is our internal wizard id.
** wCommand - WORD specifying information command
** dwData - DWORD passing data to needed to get
** info
**
** Outputs:
** lpInfo - points to the returned information
** buffer
** Returns:
** TRUE if the command is supported by the DLL.
** FALSE also indicates to do default handling.
*/
BOOL
WINAPI
Wizard_GetInfo(
 int index,
 WORD wCommand,
 DWORD dwData,
 LPVOID lpInfo)
{
 char name[128];
 BOOL bResult = TRUE;

 switch(wCommand) {
 case WIZ_DESCRIPTION:
 if((BOOL)dwData) {
 LoadString(hDrawInst, index * 2 - 1, lpInfo,
 MAX_STRING_LEN);

 } else {
 LoadString(hDrawInst, index * 2, lpInfo,
 MAX_STRING_LEN);
 }

 break;
 case WIZ_BITMAP:
 wsprintf(name, "RRECT%.2dMBMP", index);
 (HBITMAP FAR)lpInfo = LoadBitmap(hDrawInst,
 (LPSTR)name);
 break;
 case WIZ_TBOXBITMAP:
 if(((LP_WIZTBOXBITMAPINFO)dwData)->bPushed) {
 wsprintf(name, "RRECT%.2dPBMP", index);
 } else {
 wsprintf(name, "RRECT%.2dTBMP", index);
 }
 (HBITMAP FAR)lpInfo = LoadBitmap(hDrawInst,
 (LPSTR)name);
 break;
 case WIZ_GROUPNAME:
 lstrcpy(lpInfo, "Rounded Rectangles");
 break;

continued

Getting Started with the Wizard Toolkit 2-15

 case WIZ_HELPINFO:
 bResult = FALSE;
 break;
 case WIZ_FLAGS:
 *(LPDWORD)lpInfo = 0; // No special flags
 break;
 case WIZ_SIZEMODE:
 *(LPDWORD)lpInfo = WIZSIZE_FULL;
 break;
 default:
 bResult = FALSE;
 break;
 }
 return(bResult);
}

 WizardLib_GetInfo Example
 Since Wizards reside in libraries, there is some additional information that needs to
be supplied. WindowMaker will retrieve this information by calling the
WizardLib_GetInfo function. WizardLib_GetInfo is similar to Wizard_GetInfo,
in that it is passed commands for which specific information needs to be returned.
These items relate to the Wizard Library in general.

 The function prototype is as follows:
BOOL
WINAPI
WizardLib_GetInfo(
 WORD wCommand,
 DWORD dwData,
 LPVOID lpInfo)

 The following briefly describes each parameter:
Parameter Description

wCommand Specifies which property it is requesting
information about. This is an Information
Command described in "The Components of
a Wizard DLL" section.

dwData This DWORD may contain additional data
that is required for the information request.

lpInfo Pointer to the returned data.
WizardLib_GetInfo provides the
information back to WindowMaker by
attaching this pointer to it.

 The values requested in wCommand and the required actions are:
Command Required Action

WIZ_COMPANYNAME Returns company description string.

WIZ_LIBNAME Returns library descriptive name.

WIZ_NEXTWIZID Returns next Wizard ID. WindowMaker will
make multiple calls for this command,
building for itself a list of the Wizard IDs
contained in particular Wizard DLL

WIZ_VERSIONNUM Returns library version number.

WIZ_VERSIONSTR Returns library version string.

2-16 Chapter 2

 For our simple Wizard, the WizardLib_GetInfo would be:
/*
** WizardLib_GetInfo:
**
** Handles calls to get information about this
** wizard library.
** Inputs:
** wCommand - WORD specifying information
** command
** dwData - DWORD passing data to needed
** to get info
** Outputs:
** lpInfo - points to the returned
** information buffer
** Returns:
** TRUE if the command is supported by the DLL.
** FALSE also indicates to do default handling.
*/
BOOL
WINAPI
WizardLib_GetInfo(
 WORD wCommand,
 DWORD dwData,
 LPVOID lpInfo)
{
 BOOL bResult = TRUE;
switch(wCommand) {
 case WIZ_COMPANYNAME:
 lstrcpy(lpInfo, "Wonderware Corporation");
 break;
 case WIZ_VERSIONNUM:
 *(LPDWORD)lpInfo = 0;
 break;
 case WIZ_VERSIONSTR:
 lstrcpy(lpInfo, "Version 5.0 ");
 break;
 case WIZ_LIBNAME:
 lstrcpy(lpInfo, "Wonderware sample rounded rectangle
 Wizards");
 break;
 case WIZ_NEXTWIZID: // how many wizards in library
 if(dwData == 0) {
 *(LPDWORD)lpInfo = 1; // start of wizards
 }
 else if(dwData >= 2) {
 *(LPDWORD)lpInfo = 0; // indicates last wizard
 }
 else {
 *(LPDWORD)lpInfo = dwData + 1;
 }
 break;
 default:
 bResult = FALSE;
 break;
 }
 return(bResult);
}

Getting Started with the Wizard Toolkit 2-17

 Simple Wizard .RC File Example
 Now that we've provided a mechanism for WindowMaker to load bitmaps, we must
provide a link to the actual BMP files. It is the resource file (.RC file) that contains
references to the bitmaps that we'll use. It also contains strings and dialog boxes that
we'll use later. For the simple Wizard, the resource file simply contains references
to our bitmaps. For example:
#include "windows.h"

RRECT01TBMP BITMAP MOVEABLE PURE "RRECT01T.BMP"
RRECT01PBMP BITMAP MOVEABLE PURE "RRECT01P.BMP"
RRECT01MBMP BITMAP DISCARDABLE "RRECT01M.BMP"

 Building the Wizard DLL
 We are now ready to build the Wizard DLL that WindowMaker calls whenever the
Wizard is used. To build the Wizard DLL, start with the sample project makefile
that is supplied with the Wizard Toolkit. (This makefile was created using Visual
C++ and is designed for building DLLs.):

l Select the Edit command on the Project menu to edit the project file to include
the source files that we have created while building our sample Wizard

l Regenerate dependencies (happens automatically)

l Select the Build command or the Rebuild command on the Project menu to
compile and link the new DLL

 Installing the Wizard in WindowMaker
 Once the Wizard DLL is built, you can install the Wizard in WindowMaker by
performing the following steps:

1. Copy the Wizard DLL into your InTouch directory.

2. Change the filename extension from .DLL to .WZU. (The .WZU extension
indicates to WindowMaker that this is an Uninstalled Wizard.)

3. On the WindowMaker Special menu, select Configure and then select
Wizard/ActiveX Installation. The Wizard Installation dialog box will
appear.

4. Click Install to install the Wizard DLL in WindowMaker. The Wizard is now

available from the Wizard Selection Tool in the WindowMaker toolbar.

Note WindowMaker will automatically change the .WZU extension to .DLL. If you
copy the Wizard DLL file directly into your InTouch application directory with the
extension .DLL, it will not work! It must be installed using the method described
here in order to work properly! If you change the name, order, or number of
functions/wizards in the library, then you must use the Wizard Installation dialog
box to remove the old wizard, and then add the new one. Otherwise, a GPF will
occur.

2-18 Chapter 2

 Wizard Libraries
 Now that we have developed our first Wizard and used it in WindowMaker, the
basics of Wizard Development is now hopefully a lot clearer: Wizard developers
create Wizard DLLs; Wizard DLLs provide functions that WindowMaker can call;
WindowMaker calls these functions when InTouch developers want to use the
Wizard.

 Having only one Wizard in our DLL is pretty limiting. That would mean that for
every new Wizard that we want to develop, it would be necessary to write all the
code that we wrote in the previous section over and over again, Wizard_New,
Wizard_GetInfo, and so on. But that is not necessary. Wizard DLLs can contain
multiple Wizards which can share these functions. Our Wizard DLL is then referred
to as a Wizard Library, and Wizards are treated as individual entries in these
libraries. In this next section, we'll examine the issues surrounding Wizard
Libraries.

Note The examples from now on, including those in the next section involving
building configurable wizards are based upon Wizard Libraries. Almost all Wizards
are contained in libraries, and so it is very important to understand the concepts
introduced in this section

 Normally, a Wizard DLL will contain multiple wizards that are related in some way.
Building a Wizard Library like this involves a little planning, particularly in the area
of naming conventions, which is discussed here as well. Building a Wizard Library
correctly from the start will make it very easy to expand later.

Getting Started with the Wizard Toolkit 2-19

 Creating Libraries with Multiple Wizards
 To support multiple Wizards, a typical Wizard DLL is structured as follows:

 When an InTouch application developer selects a Wizard from the toolbar and
places it in a window, WindowMaker considers this Wizard to be in the NEW
mode. To handle the processing of a NEW mode Wizard, WindowMaker calls
Wizard_New in the Wizard DLL. This is the same action that occurs with a Wizard
DLL that contains only one Wizard.

 When the DLL contains multiple Wizards, Wizard_New will dispatch other
routines, RRect01New or RRect02New (depending upon the particular Wizard), to
handle the actual drawing and resizing. The index parameter passed to
Wizard_New specifies which Wizard in the library is about to be created, and
which dispatch function is to be called. Upon completion, these dispatched
functions pass control back to Wizard_New which gives control back to
WindowMaker.

 DllMain

 WZMAIN.C

 RRECT.RC

 WindowMaker

 RRECT01.C

 Wizard-New

 BITMAP

 STRINGTABLE

 NEW

 Information

 RRect01-New

 RRECT02.C

 RRect02-New

 Wizard-GetInfo

 WizardLib-GetInfo

2-20 Chapter 2

 The body of the code (that used to be in Wizard_New) is now RRect01New.
RRect01New is called from Wizard_New when a Wizard with index number one
is about to be created. For example:
int FAR PASCAL Wizard_New(
 HCHUNK hChunk,
 int index,
 int left,
 int top,
 int right,
 int bottom,
 LPSTR dllName,
 WHMEM whData,
 int mode,
 RECT prevRect,
 WHMEM FAR *pwhWizard)
{
 int error;
 error = 0;
 switch(index) {

 case 1:
 error = RRect01New(hChunk, index, left, top, right,
 bottom, dllName, whData, mode, prevRect,
 pwhWizard);
 break;

 case 2:
 error = RRect02New(hChunk, index, left, top, right,
 bottom, dllName, whData, mode, prevRect,
 pwhWizard);
 break;

 default:
 *pwhWizard = whNull;
 error = 1;
 break;
 }
 return(error);
}

 The remaining changes to a Wizard DLL (to accommodate multiple Wizards) are in
the Wizard_GetInfo and WizardLib_GetInfo functions. The templates that we
used in the earlier examples for these routines are already set up to accommodate
multiple Wizards in a library. If we follow a few simple naming conventions, these
functions become generic and can easily handle Wizard libraries with any number
of Wizards.

Getting Started with the Wizard Toolkit 2-21

 Naming Conventions
 The basis of all the names in your Wizard Library should be a simple mnemonic
that categorizes the type of Wizards in the library. For example, METER. The
library name is followed by a unique two-digit number to identify the individual
Wizard in the library. For example, name all bitmap files using the following
convention:

 BITMAPS:

 _ _ _ _ _ _ _ . BMP METER01M.BMP

 METER01T.BMP

 METER01P.BMP

 The "M" extension is for the (M)ain Wizard Selection dialog box bitmap, the "T"
extension is for the (T)oolbar Button Down bitmap, and the "P" extension is for the
Toolbar Button (P)ushed-In bitmap.

 Name each bitmap resource (in the project's RC file) the same as the filename,
without the period (.). For example, the bitmap resources for the bitmaps in the
example would be listed as follows:

 For example:
METER01MBMP BITMAP MOVEABLE PURE

"METER01M.BMP"
METER01TBMP BITMAP MOVEABLE PURE

"METER01T.BMP"
METER01PBMP BITMAP MOVEABLE PURE

"METER01P.BMP"

 We recommend that all Wizard descriptions reside in the STRINGTABLE for the
Wizard library. The string table identifier for each Wizard is generated using the
following formula:
 Long Description (index) * 2 - 1

 Short Description (index) * 2

 Using this formula, a description string table can be constructed for a library of
three meter Wizards:

STRINGTABLE
BEGIN
1, "Meter 1 Long Description"
2, "Meter 1 Short Description"
3, "Meter 2 Long Description"
4, "Meter 2 Short Description"
5, "Meter 3 Long Description"
6, "Meter 3 Short Description"
END

 (library)

 M

 P (index)

2-22 Chapter 2

 Building a Configurable Wizard
The real power of Wizards lies in the ability of the InTouch application developer
to change the characteristics of the Wizard to suit the particular application being
built. In our previous examples, we created a Wizard that was sizable with
predetermined animation links. In most cases, a Wizard will have certain
characteristics (or properties), such as fonts, location links, size links, color links,
and so on, that the application developer can choose when using the Wizard. The
Wizard developer provides this configurability when writing the Wizard.

 There is no pre-determined set of properties that the Wizard developer must use. A
Meter Wizard may allow the application developer to configure the number of tick
marks, the range, and the label color. A Command push button Wizard may allow
the application developer to configure the text on the button and the script
associated with the button. All of the animation links that are available in the
WindowMaker links dialog box can be exposed as configurable properties to the
Wizard user. It is up to the Wizard developer to determine the properties of the
InTouch object that should be configured. If desired, certain properties can even be
selected from the WindowMaker toolbar while drawing the object.

 When an InTouch application developer double-clicks on a Wizard for
configuration, the Wizard DLL that originally drew the Wizard will display a dialog
box. This dialog box allows the InTouch application developer to configure the
Wizard. The Wizard DLL then takes the application developer's dialog box entries
and stores them with the Wizard as "Wizard Properties."

 A property is defined and set by the Wizard developer via the WizProp_Set*
functions. For example, if we allow the InTouch application developer to configure
the expression associated with the blink link for the simple Wizard we previously
created, we would need to define a property, give it a name, and store the
application developer's choice as the value of this property. All of this is called by
WindowMaker and happens in a special routine called Wizard_Edit. Every time
the application developer double-clicks on the Wizard, WindowMaker will call
Wizard_Edit.

Getting Started with the Wizard Toolkit 2-23

 To support the configuration, a typical Wizard DLL is structured as follows:

1. When WindowMaker gets a signal from an application developer to configure a
Wizard (double-clicks on the Wizard), WindowMaker will call Wizard_Edit.
The Wizard developer needs to provide the Wizard_Edit and place it in the
WZMAIN.C or DLLMAIN.C file.

2. Wizard_Edit then calls the DialogBox() function to create a dialog box and
call a dialog procedure, RRectADlgProc. This will effectively "hand over"
control to Windows, which will call RRectADlgProc.

3. The dialog box and the dialog procedure, RRectADlgProc will allow the
application developer to modify and save the properties of the Wizard.
Windows passes messages to the RRectADlgProc as the application developer
interacts with the dialog box.

 DllMain

 WZMAIN.C

 RRECT.RC

 RRECT01.C

 Wizard-New

 DIALOG

 EDIT

 RRect01-New

 RRECT02.C

 RRect02-New

 Wizard-Edit Windows

 RRECTA.C

 RRectADlgProc

 1.

 2. 3.

 4.

 Wizard-GetInfo

 WizardLib-GetInfo

 EDIT

 WindowMaker

 5.

2-24 Chapter 2

4. Once the application developer clicks OK in the dialog box, RRectADlgProc
will save the properties and return control to Windows. Windows then returns
to Wizard_Edit. Wizard_Edit then returns control to WindowMaker. The
Wizard developer needs to provide the toolbar and RRectADlgProc. The
toolbar resource is placed in the resource (RC) file. RRectADlgProc is
normally placed in a file by itself, in this case RRECTA.C

5. After the EDIT mode call to Wizard_Edit is completed, WindowMaker will
automatically make an EDIT mode call to Wizard_New so that the DLL can
take advantage of the modified properties to redraw the Wizard. In this case,
Wizard_New will dispatch to either RRect01New or RRect02New to retrieve
the new properties (saved by RRectADlgProc) and redraw.

 Wizard_Edit Example
 The Wizard_Edit routine is similar to the Wizard_New routine in that it uses the
index parameter to decide which Wizard to edit. Wizard_Edit creates a dialog box
and calls a dialog procedure. The dialog procedure allows the application developer
to modify and save the properties of the Wizard. The following Wizard_Edit
routine will create a dialog box from the resource "RRECTADLG" and call a dialog
procedure, RRectADlgProc. Notice that the dialog procedure and dialog box do
not have to be associated with only one Wizard. It's possible that several Wizards in
the DLL will be similar enough that their properties can be configured with same
dialog box. For example:
/*
** Wizard_Edit:
**
** Brings up dialog box to edit the Wizard's
** configuration.
** Modify/edit Wizard properties as appropriate and
** save
** if user selects OK.
** Abandon changes if user selects Cancel.
**
** Process:
** 1. Initialize globals needed to remember Wizard
** being edited.
** 2. Bring up the dialog.
**
** Inputs:
** whObj - wizard's object handle
** hChunk - memory allocation handle
**
** Outputs:
** None
**
** Returns:
** error code or 0 if no error.
*/

continued

Getting Started with the Wizard Toolkit 2-25

int

WINAPI
Wizard_Edit (
 int index,
 WHMEM whObj,
 HCHUNK hChunk)
{
 editObj = whObj;
 editChunk = hChunk;
 editIndex = index;
 switch (index) {

 case 1:
 case 2:
 DialogBox (hDrawInst, "RRECTADLG", hDrawWnd,
 RRectADlgProc);
 break;

 default:
 break;
 }

 return FALSE;
}

 Property Names
 In the next example, we have decided to allow the application developer to
configure the blink expression associated with the rounded rectangle object.
However, before we can do that, we have to discuss one aspect of adding
configurability to Wizards that has not been mentioned so far. That is property
names. When giving a Wizard a characteristic or property that the application
developer can configure, the Wizard developer also must determine a name for this
property. This property name is a text string that is used to associate a given
property with the Wizard. This property name will then be used as an ID or label
for retrieving and storing the value of the property. A table containing each property
name and its current value will also be stored with the Wizard.

 The name of our property will be "BlinkExpression." It will be specified in our
code by the constant PROP_RRECTA_BLINKEXPR, which is #define'd in one of
our header files.

2-26 Chapter 2

 Dialog Proc Example
 In our example the property will be an InTouch expression, therefore we will use
the WizProp_SetExpr and WizProp_GetExpr functions to update and read the
value of our property. Making the property an expression (versus a String) allows us
to use the Substitute Tags command on the WindowMaker Special menu on our
Wizard. The dialog procedure is as follows:
/*
** RRectADlgProc:
** Handles our wizard's dialog.
** Inputs:
** Std Window's dialog procedure inputs.
** Outputs:
** None
** Returns:
** Std Window's dialog procedure return.
*/
// Globals for editing purposes used by our dialog.

extern WHMEM editObj;
extern HCHUNK editChunk;
extern int editIndex;

BOOL
WINAPI
RRectADlgProc (
 HWND hDlg,
 int message,
 WPARAM wParam,
 LPARAM lParam)
{
 RECT rect;
 char text[NL_EXPRESSION];

 switch (message) {
 case WM_INITDIALOG:
 /* Center the dialog */
 GetWindowRect (hDlg, &rect);
 MoveWindow (hDlg,
 (GetSystemMetrics (SM_CXSCREEN) -
 (rect.right - rect.left)) / 2,
 (GetSystemMetrics (SM_CYSCREEN) -
 (rect.bottom - rect.top)) / 2,
 rect.right - rect.left,
 rect.bottom - rect.top, FALSE);
 /* Limit the number of characters in the blink
 * expression control
 */
 SendMessage (GetDlgItem (hDlg, ID_RRECTA_BLINKEXPR),
 EM_LIMITTEXT, NL_EXPRESSION - 1, 0);
 /* Get properties and initialize dialog fields */

continued

Getting Started with the Wizard Toolkit 2-27

 WizProp_GetExpr (editChunk, editObj,
 PROP_RRECTA_BLINKEXPR, NL_EXPRESSION, text,
 defBlinkExprName);
 SetDlgItemText (hDlg, ID_RRECT_BLINKEXPR, text);

 WWDlg_RegisterTagNameCtrl(hDlg,
ID_RRECTA_BLINKEXPR);

 SendMessage(GetDlgItem(hDlg, ID_RRECTA_BLINKEXPR),
 EM_SETSEL, 0, MAKELONG(0,32767));
 SetFocus(GetDlgItem(hDlg, ID_RRECTA_BLINKEXPR));

 return FALSE;

 case WM_COMMAND:
 switch (LOWORD (wParam)) {
 case IDCANCEL:
 WWDlg_UnregisterTagNameCtrl(hDlg,
 ID_RRECTA_BLINKEXPR);
 EndDialog (hDlg, 0);
 return (TRUE);

 case IDOK:
 if(WWDlg_CheckExprCtrl(hDlg,
 ID_RRECTA_BLINKEXPR,
 TYPE_DISCRETE)) {
 return TRUE;

 } else {
 WWDlg_UnregisterTagNameCtrl(hDlg,
 ID_RRECTA_BLINKEXPR);
 WWDlg_UnregisterColorCtrl(hDlg,
 ID_RRECTA_ONCOLOR, &dwData);
 WizProp_SetDWord(editChunk, editObj,
 PROP_RRECTA_ONCOLOR, dwData);
 dwData = DEF_OFF_COLOR;
 GetDlgItemText(hDlg, ID_RRECTA_BLINKEXPR,
 text, NL_TAGNAME);
 text[NL_TAGNAME-1] = '\0';
 WizProp_SetString(editChunk, editObj,
 PROP_RRECTA_BLINKEXPR, text);
 }

 EndDialog(hDlg, 0);
 return(TRUE);

 default:
 return FALSE;
 }
 return TRUE;

 default:
 return FALSE;
 }
 return (TRUE);
}

2-28 Chapter 2

 In the WM_INITDIALOG message processing, the function WizProp_GetExpr
retrieves either the current value of the property named
PROP_RRECTA_BLINKEXPR or a default value defBlinkExprName, if the
property does not currently exist (has not been set yet). In this example, the property
name PROP_RRECTA_BLINKEXPR and default value defBlinkExprName have
been defined as follows:
#define PROP_RRECTA_BLINKEXPR rrectBlinkExprStr
LPSTR rrectBlinkExprStr = "BlinkExpression";

LPSTR defBlinkExprName = "?d:Discrete";

 When OK is clicked, the contents of the edit control for the blink expression is read
and stored in the Wizard as the property named PROP_RRECTA_BLINKEXPR,
via the WizProp_SetExpr function. Once the WizProp_SetExpr function has been
executed, our Wizard will have a property of name PROP_RRECTA_BLINKEXPR
and a value as specified by the user.

 Now that we have built a Wizard_Edit routine that calls a dialog procedure and the
dialog procedure sets the property, where do we go from here? After Wizard_Edit
returns, Wizard_New will be called by WindowMaker to create an object with the
new value of any properties modified by Wizard_Edit.

 Wizard_New calls RRect01New to draw the object and configure any links. The
RRect01New routine needs to set up the blink link from the property (as opposed to
the predefined code that was generated from the Generate Wizard command). In
the original routine, the parameter for the blink expression on the BlinkLnk_New
function was hard coded to be the expression, Discrete:
lstrcpy(parseBuf, "Discrete");

 We will make this configurable, by adding the function WizProp_GetExpr before
the WizardObj_New function call to get the current value of the property named
PROP_RRECTA_BLINKEXPR. The string returned by that call, is returned into
the buffer blinkExpr:
WizProp_GetExpr (hChunk, whData, PROP_RRECTA_BLINKEXPR,
 NL_TAGNAME, blinkExpr, defBlinkExprName);

 That buffer is used as the parameter to BlinkLnk_New, which sets the expression to
use for the blink link:

wsprintf(parseBuf, "%s", (LPSTR)blinkExpr);
 BlinkLnk_New(hChunk, whObj, parseBuf, FALSE,
 RGB(0x00, 0x00, 0x00), RGB(0x00, 0x80, 0x40),
 RGB(0x00, 0x00, 0x00), BLINK_MEDIUM);

Getting Started with the Wizard Toolkit 2-29

 The first time Wizard_New is called, there is no value for the property named
PROP_RRECTA_BLINKEXPR therefore, the default value (specified by
defBlinkExprName) is used (?d:Discrete). Once the InTouch application developer
double-clicks the Wizard and specifies a "real" blink expression, the property value
is set and Wizard_Edit will cause Wizard_New to be called again. This time, the
WizProp_GetExpr will return the value specified by the InTouch application
developer.

 The modified RRect01New function would become:
int
WINAPI
RRect01New (
 HCHUNK hChunk,
 int index,
 int left,
 int top,
 int right,
 int bottom,
 LPSTR dllName,
 WHMEM whData,
 int mode,
 RECT prevRect,
 WHMEM FAR * pwhWizard)
{
 WHMEM whHLObj;
 WHMEM whObj;
 RECT oldRect;
 RECT newRect;
 char blinkExpr[NL_EXPRESSION];

SetRect (&oldRect, 419, 19, 581, 91);
 if (left == right && top == bottom) {
 right = left + oldRect.right - oldRect.left;
 bottom = top + oldRect.bottom - oldRect.top;
 }

SetRect (&newRect, left, top, right, bottom);

 /* Initialize any properties */
 WizProp_GetExpr (hChunk, whData,
 PROP_RRECTA_BLINKEXPR, NL_EXPRESSION, blinkExpr,
 defBlinkExprName);

 whHLObj = WizardObj_New (hChunk, (WHMEM) 0,
 left, top, right, bottom, dllName, index, whData);

 wizPen.lopnStyle = 0;
 wizPen.lopnWidth.x = 1;
 wizPen.lopnWidth.y = 1;
 wizPen.lopnColor = RGB (0x00, 0x00, 0x00);
 WWKit_SetPen (&wizPen);

 wizBrush.lbStyle = 0;
 wizBrush.lbColor = RGB (0xff, 0xff, 0xff);
 wizBrush.lbHatch = 4;
 WWKit_SetBrush (&wizBrush);

 SetRect (&tmpRect1, 420, 20, 580, 90);
 Rect_Scale (&tmpRect1, &oldRect, &newRect, 0);
 whObj = RRectangleObj_New (hChunk, whHLObj,
 tmpRect1.left, tmpRect1.top,
 tmpRect1.right, tmpRect1.bottom, 20, 20);

continued

2-30 Chapter 2

 wsprintf (parseBuf, "%s", (LPSTR) blinkExpr);

 BlinkLnk_New (hChunk, whObj, parseBuf, FALSE,
 RGB (0x00, 0x00, 0x00), RGB (0x00, 0x80, 0x40),
 RGB (0x00, 0x00, 0x00), BLINK_MEDIUM);

 *pwhWizard = whHLObj;
 return 0;
}

 Before we are finished, one more change needs to get made. The .DEF file needs to
be changed to add the exports for Wizard_Edit and RRectADlgProc. If these
exports are not added, those routines will not be visible outside the DLL and
problems will occur when WindowMaker wants to call your Wizard DLL:
LIBRARY wzsample
DESCRIPTION 'WIZARD Toolkit Sample DLL'

''EXPORTS
 Wizard_New
 Wizard_GetInfo
 WizardLib_GetInfo
 Wizard_Edit
 RRectADlgProc

 Now that we have completed these steps, when the InTouch application developer
pastes our simple Wizard into a window and then, double-clicks it, the following
dialog box will appear:

 The InTouch application developer can now enter a valid expression that will be
evaluated to control the blink link.

Getting Started with the Wizard Toolkit 2-31

 Special Wizard Dialog Controls
 The Wizard API provides several functions that expose some of the dialog controls
in WindowMaker. For example, if the Wizard developer wanted to have a Wizard
property that allows the InTouch application developer to configure the color of the
blink link, he could make the InTouch application developer type in the RGB color
in the edit control (not very friendly) or use the WWDlg_RegisterColorCtl and
WWDlg_UnregisterColorCtl functions. These functions register a dialog item to
use the standard InTouch color choice mechanism.

 Let's assume that we wanted to allow the InTouch application developer to define
the color that will be used when our simple Wizard is blinking "on." To accomplish
this, we will have to first modify the dialog box to allow for the color change item to
be specified and then modify the dialog procedure. We will also have to modify the
RRect01New function to use another property named
PROP_RRECTA_ONCOLOR. First, the Wizard configuration dialog box should be
modified to allow for the color control. This must be a list box control. For
example:
RRECTADLG DIALOG 18, 18, 232, 88
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION
CAPTION "Rounded Rectangle Wizard"
FONT 8, "MS Sans Serif"
BEGIN
 LTEXT "Blink when:", -1, 19, 19, 42, 11, WS_CHILD |
 WS_VISIBLE | WS_GROUP
 CONTROL "", ID_RRECT_BLINKEXPR, "EDIT", ES_LEFT |
 ES_AUTOHSCROLL | WS_CHILD | WS_VISIBLE | WS_BORDER |
 WS_TABSTOP, 68, 17, 150, 12
 LTEXT "Fill Color On:", -1, 19, 48, 47, 10, WS_CHILD |
 WS_VISIBLE | WS_GROUP
 CONTROL "", ID_RRECTA_ONCOLOR, "listbox", LBS_NOTIFY |
 WS_BORDER | WS_CHILD | LBS_NOINTEGRALHEIGHT, 70, 48,
 20, 10
 DEFPUSHBUTTON "OK", IDOK, 74, 70, 38, 14, WS_CHILD |
 WS_VISIBLE | WS_TABSTOP
 PUSHBUTTON "Cancel", IDCANCEL, 120, 70, 38, 14, WS_CHILD |
 WS_VISIBLE | WS_TABSTOP
END

2-32 Chapter 2

 The dialog procedure is also modified to use the color control. The
WWDlg_RegisterColorCtrl function is called during WM_INITDIALOG
processing. The WWDlg_RegisterColorCtrl uses a list box control. When the
application developer clicks on the list box the standard InTouch color selection
palette appears. Calling WWDlg_UnregisterColorCtrl returns the selected color
value. The RRectADlgProc would be as follows:

BOOL
WINAPI
RRectADlgProc (
 HWND hDlg,
 int message,
 WPARAM wParam,
 LPARAM lParam)
{
 RECT rect;
 DWORD dwData;
 char text[NL_EXPRESSION];

 switch (message) {
 case WM_INITDIALOG:
 /* Center the dialog */
 GetWindowRect (hDlg, &rect);
 MoveWindow (hDlg,
 (GetSystemMetrics (SM_CXSCREEN) -
 (rect.right - rect.left)) / 2,
 (GetSystemMetrics (SM_CYSCREEN) -
 (rect.bottom - rect.top)) / 2,
 rect.right - rect.left,
 rect.bottom - rect.top, FALSE);
 /* Limit the number of characters in the blink
 * expression control
 */
 SendMessage (GetDlgItem (hDlg, ID_RRECT_BLINKEXPR),
 EM_LIMITTEXT, NL_EXPRESSION - 1, 0);

 /* Get properties and initialize dialog fields */
 WizProp_GetDWord (editChunk, editObj,
 PROP_RRECTA_ONCOLOR, &dwData, DEF_ON_COLOR);
 WWDlg_RegisterColorCtrl (hDlg, ID_RRECTA_ONCOLOR,
 dwData);
 WizProp_GetExpr (editChunk, editObj,
 PROP_RRECTA_BLINKEXPR, NL_EXPRESSION, text,
 defBlinkExprName);
 SetDlgItemText (hDlg, ID_RRECTA_BLINKEXPR, text);

 return FALSE;

 case WM_COMMAND:
 switch (LOWORD (wParam)) {
 case IDCANCEL:
 /* Unregister the color controls */
 WWDlg_UnregisterColorCtrl (hDlg,
 ID_RRECTA_ONCOLOR, &dwData);

 EndDialog (hDlg, 0);
 return (TRUE);

continued

Getting Started with the Wizard Toolkit 2-33

 case IDOK:
 /* Unregister controls, save properties */
 dwData = DEF_OFF_COLOR;
 WWDlg_UnregisterColorCtrl (hDlg,
 ID_RRECTA_ONCOLOR, &dwData);
 WizProp_SetDWord (editChunk, editObj,
 PROP_RRECTA_ONCOLOR, dwData);
 GetDlgItemText (hDlg, ID_RRECT_BLINKEXPR, text,
 NL_EXPRESSION);
 text[NL_EXPRESSION - 1] = '\0';
 WizProp_SetExpr (editChunk, editObj,
 PROP_RRECTA_BLINKEXPR, text);
 EndDialog (hDlg, 0);
 return (TRUE);

 default:
 return FALSE;
 }
 return TRUE;

 default:
 return FALSE;
 }
 return (TRUE);
}

 The new property for the color, PROP_RECTA_ONCOLOR is retrieved during
WM_INITDIALOG using WizProp_GetDWord, then sent back to the Wizard
once the InTouch application developer clicks OK, using WizProp_SetDWord.
(Since the color value is an RGB value, the property type that we use is DWORD.)

 The last step is changing the RRect01New function to use the new color property.
Since the color fill for the blink link is one of the parameters in our
BlinkLink_New function, the "hard-coded" color value should be replaced by the
value saved in our property. The WizProp_GetDWord function is used to retrieve
the DWORD value in the property named PROP_RECTA_ONCOLOR, which is
then stored in the LONG variable onColor.

 Notice that the fill color parameter has been changed from the hard-coded RGB
color to the color in onColor:
BlinkLnk_New(hChunk, whObj, parseBuf, FALSE,
 RGB(0x00, 0x00, 0x00), onColor,
 RGB(0x00, 0x00, 0x00), BLINK_MEDIUM);

2-34 Chapter 2

 The new RRect01New function becomes:
int WINAPI
RRect01New (
 HCHUNK hChunk,
 int index,
 int left,
 int top,
 int right,
 int bottom,
 LPSTR dllName,
 WHMEM whData,
 int mode,
 RECT prevRect,
 WHMEM FAR * pwhWizard)
{
 WHMEM whHLObj;
 WHMEM whObj;
 RECT oldRect;
 RECT newRect;
 DWORD dwData;
 char blinkExpr[NL_EXPRESSION];
 LONG onColor;

 SetRect (&oldRect, 419, 19, 581, 91);
 if (left == right && top == bottom) {
 right = left + oldRect.right - oldRect.left;
 bottom = top + oldRect.bottom - oldRect.top;
 }

 SetRect (&newRect, left, top, right, bottom);
 /* Initialize any properties */

 WizProp_GetDWord (hChunk, whData,
 PROP_RRECTA_ONCOLOR, &dwData, DEF_ON_COLOR);
 onColor = (LONG) dwData;
 WizProp_GetExpr (hChunk, whData,
 PROP_RRECTA_BLINKEXPR, NL_EXPRESSION, blinkExpr,
 defBlinkExprName);

 whHLObj = WizardObj_New (hChunk, (WHMEM) 0,
 left, top, right, bottom, dllName, index, whData);

 wizPen.lopnStyle = 0;
 wizPen.lopnWidth.x = 1;
 wizPen.lopnWidth.y = 1;
 wizPen.lopnColor = RGB (0x00, 0x00, 0x00);
 WWKit_SetPen (&wizPen);

 wizBrush.lbStyle = 0;
 wizBrush.lbColor = RGB (0xff, 0xff, 0xff);
 wizBrush.lbHatch = 4;
 WWKit_SetBrush (&wizBrush);

 SetRect (&tmpRect1, 420, 20, 580, 90);
 Rect_Scale (&tmpRect1, &oldRect, &newRect, 0);

continued

Getting Started with the Wizard Toolkit 2-35

whObj = RRectangleObj_New (hChunk, whHLObj,
 tmpRect1.left, tmpRect1.top,
 tmpRect1.right, tmpRect1.bottom, 20, 20);

 wsprintf (parseBuf, "%s", (LPSTR) blinkExpr);

 BlinkLnk_New (hChunk, whObj, parseBuf, FALSE,
 RGB (0x00, 0x00, 0x00), onColor,
 RGB (0x00, 0x00, 0x00), BLINK_MEDIUM);

 *pwhWizard = whHLObj;
 return 0;
}

 Now that we have completed these steps, when the InTouch application developer
places our simple Wizard into a window and double-clicks on it, the following
configuration dialog box will appear:

 The InTouch application developer now has the ability to change both the Blink
Expression and the Color for the blink "on" condition.

2-36 Chapter 2

 Wizard Toolkit Dialog Functions
 The Wizard API also provides several functions that are worth mentioning at this
point. Some of the functions provide standard InTouch user interfaces such as a
script editor or key-equivalent handling. Other functions provide error checking and
can alleviate some of the tedious error checking of values that should occur in the
dialog procedures.

Function Description

WWDlg_CheckExprCtrl Validates the item using the
standard InTouch validation of
Script expressions. Error messages
are automatically displayed when
an error is detected.

WWDlg_CheckTagCtrl Validates the dialog item using the
standard InTouch validation of
database tagnames. Error messages
are automatically displayed when
an error is detected.

WWDlg_GetDoubleCtrl Validates the dialog item using
standard InTouch validation rules
for floating point values. The
resulting value is returned.

WWDlg_ProcessKeyCtrl Processes messages to the key-
equivalent handling controls.
Displays standard InTouch key-
equivalent dialog if requested.

WWDlg_RegisterColorCtrl Registers a dialog item to use the
standard InTouch color choice
dialog.

WWDlg_RegisterKeyCtrl Registers a set of dialog items to
obtain key-equivalent handling
information for the Wizard.

WWDlg_RegisterTagnameCtrl Registers a dialog item to respond
to a double-click by displaying the
standard tagname selection dialog.

WWDlg_ScriptEdit Displays a generic script editing
dialog.

WWDlg_SetDoubleCtrl Sets the dialog item with the
character representation for the
floating point value specified.

WWDlg_UnregisterColorCtrl Unregisters a dialog item that was
registered using
WWDlg_RegisterColorCtrl. Any
memory used is freed and the
current color selection is returned.

Getting Started with the Wizard Toolkit 2-37

Function Description

WWDlg_UnregisterKeyCtrl Unregisters the set of dialog items
to that were registered in
WWDlg_RegisterKeyCtrl. Frees
any memory associated with the
dialog mapping.

WWDlg_UnregisterTagnameCtrl Unregisters a dialog box item that
was registered using
WWDlg_RegisterTagnameCtrl.
Any memory is freed and the
control takes on its standard
Windows capabilities.

2-38 Chapter 2

3-1

C H A P T E R 3

Wizard Toolkit Functions

 This chapter describes the Wizard Toolkit Application Programming Interface
(API) functions that are used to create and manipulate InTouch objects. The
functions in the Wizard API are used by the Wizard Developer to implement the
Wizard_New and Wizard_Edit functions for each wizard. A simple wizard may
only need to access a few of these functions while a complex wizard may need to
access many of them. The following briefly describes the categories of Wizard API
functions and their primary purpose:

 Wizard DLL:
 Standard Functions Required to build the wizard DLL and called

by WindowMaker to access wizard
functionality.

 Wizard API Functions:
 General Functions Provide toolkit initialization, error checking

and other routines that are typically used by
all wizards.

 Object Functions Manipulate window objects such as, text,
simple objects and complex trending and
alarm objects.

 Link Functions Define animation, input/output functionality
for window objects.

 Utility Functions Used for scaling fonts, points and rectangles.

 Wizard Property Functions Define the properties for configurable
wizards.

 User Interface Functions Used in wizard user interfaces to provide
consistent error checking and a common set of
user interface controls.

 Database Tagname Functions Create, find and manipulate InTouch database
entries, Access Names and Alarm Groups.

Contents
n Wizard DLL Standard Functions

n Wizard API Functions

3-2 Chapter 3

 Wizard DLL Standard Functions
 As a wizard developer you must create a Windows DLL for each set of wizards that
you distribute. One or more wizards can be contained in a single DLL. A wizard
DLL must support a standard set of functions. These functions are called by
WindowMaker to access wizard functionality.
Function Description

Wizard_New Creates a new wizard. This function is called
to place a new wizard, resize an existing
wizard, or after the user has modified the
wizard through the wizard's dialog.

Wizard_GetInfo Returns information about a particular wizard
for integration into the WindowMaker
Wizard Set.

WizardLib_GetInfo Returns information to WindowMaker about
a Wizard Library.

Wizard_Edit Brings up dialog box to edit the Wizard's
configuration. You must supply a Windows
dialog box to handle changing the wizard's
configuration. Modify or edit wizard
properties as appropriate and save if user
clicks OK. Abandon changes if user selects
Cancel.

Wizard_DoCommand Allows the wizard to execute a process for
command wizards. Required only for
command wizards.

For more information, see the "Command
Wizards" section of Chapter 4.

 Each of the Wizard_ functions, for example, Wizard_New, that you must supply
for a wizard DLL take a parameter called index. This parameter is used when
developing a wizard DLL library that contains more than one wizard. The index is a
unique number that you use to identify each wizard in the wizard DLL. This index
does not have to be unique across different wizard DLLs. Index must be a positive
number greater than 0.

Note We recommend that once you have distributed a wizard DLL and assigned a
unique number to each wizard, that you maintain the same numbers for the wizards
in your DLL. Also, if you later discontinue the support of a wizard, do not reassign
the wizard's unique number to another wizard or new wizard in your wizard DLL.

Wizard Toolkit Functions 3-3

 Wizard API Functions
 The functions described in this section are used by the Wizard developer to
implement the Wizard_New and Wizard_Edit functions for each wizard.

 General Functions
 General functions provide toolkit initialization, error checking, and other routines
typically used by all wizards.
Function Description

WWKit_GetKeyStatus Retrieves the current status of the
Wonderware hardware key.

WWKit_GetLastError Returns the error status of the most recent
call to the Wizard Toolkit.

WWKit_GetSerialNumber Retrieves the serial number of the
Wonderware hardware key.

WWKit_Init Initializes the wizard toolkit if not
previously done so. This call must be done
at least once per wizard DLL. Normally this
is done in Wizard_New.

WWKit_SetBrush Sets the brush used when manipulating
objects that have a brush associated with
them.

WWKit_SetFont Sets the font used when manipulating
objects that have a font associated with
them.

WWKit_SetPen Sets the pen used when manipulating objects
that have a pen associated with them.

WWKit_SetTextBrush Sets the text brush used when manipulating
objects that have a text brush associated
with them.

WWKit_SetTextPen Sets the text pen used when manipulating
objects that have a text pen associated with
them.

3-4 Chapter 3

 Object Functions
 Object functions are used to manipulate window objects such as text, simple
drawing objects, and the more complex trending and alarm objects. Using object
functions the developer can create useful application specific objects and general
purpose objects.

 These functions create new window objects.

Function Description

AlarmObj_New Creates an alarm object at the specified
location in the current application window.

BitmapObj_New Creates a bitmap object at the specified
location in the current application window.

ButtonObj_New Creates a button object at the specified
location in the current application window.
Labels the button with the specified text.

DllObj_New Creates a DLL object at the specified
location in the current application window.
Currently available DLL objects include the
InTouch SPC pareto, histogram, and control
chart objects.

EllipseObj_New Creates an ellipse object at the specified
location in the current application window.

GroupObj_New Creates a group (cell) object at the specified
location in the current application window.
The Wizard can then populate the group with
other objects by using this object's handle as
the parent handle.

HistTrendObj_New Creates a historical trend object at the
specified location in the current application
window.

LineObj_New Creates a line object at the specified location
in the current application window.

PolygonObj_New Creates a polygon object at the specified
location in the current application window.

PolylineObj_New Creates a polyline object at the specified
location in the current application window.

RealTrendObj_New Creates a real time trend object at the
specified location in the current application
window.

RectangleObj_New Creates a rectangle object at the specified
location in the current application window.

RRectangleObj_New Creates a rounded corner rectangle object at
the specified location in the current
application window.

Wizard Toolkit Functions 3-5

Function Description

SymbolObj_New Creates a symbol object at the specified
location in the current application window.
The Wizard can then populate the symbol
with other objects by using this object's
handle as the parent handle.

TextObj_New Creates a text object at the specified location
in the current application window.

WizardObj_New Creates a wizard object at the specified
location in the current application window.
Populate the wizard with other objects by
using this object's handle as the parent
handle. The following functions manipulate
existing window objects.

Obj_Delete Deletes the specified window object.

TrendObj_SetItem Configures an item within the specified
historical or real time trend object. Each item
corresponds to a pen in the trend.

TrendObj_SetTimeInfo Configures the time axis settings within the
specified historical or real time trend object.

TrendObj_SetValueInfo Configures the value axis settings within the
specified historical or real time trend object.

3-6 Chapter 3

 Utility Functions
 A set of utility functions is provided for scaling fonts, points, and rectangles.

Function Description

Font_Scale Linearly scales the logical font supplied
using the old and new rectangles and the
string specified.

PointReal_Scale Linearly scales the point defined as floating
point numbers supplied using the old and
new rectangles specified.

PointRealArray_Scale Linearly scales the array of points defined as
floating point numbers supplied using the
old and new rectangles specified.

Point_Scale Linearly scales the point supplied using the
old and new rectangles specified.

PointArray_Scale Linearly scales the array of points supplied
using the old and new rectangles specified.

Rect_Scale Linearly scales the rectangle supplied using
the old and new rectangles specified.

RectReal_Scale Linearly scales the rectangle with REAL
coordinates.

Text_GetExtent Returns the width and height of the text in
pixels, based upon the logical font specified.
This function should be used instead of the
Windows GetTextExtent function when
calculating the metrics of text to be used in
creating InTouch objects.

Wizard Toolkit Functions 3-7

 Link Functions
 Link functions define animation and input/output functionality for window objects.
These objects have been created using one of the functions in the Object Functions
group.
Function Description

AnlgAlarmLnk_New Connects an analog alarm link to the object
specified.

AnlgColorLnk_New Connects an analog fill, text, or line link to
the object specified.

AnlgInputLnk_New Connects an analog input link to the object
specified.

AnlgOutputLnk_New Connects an analog output link to the object
specified.

BlinkLnk_New Connects a blink link to the object specified.

DisableLnk_New Connects a disable link to the object
specified.

DiscAlarmLnk_New Connects a discrete alarm link to the object
specified.

DiscColorLnk_New Connects a discrete fill, text, or line link to
the object specified.

DiscInputLnk_New Connects a discrete input link to the object
specified.

DiscOutputLnk_New Connects a discrete output link to the object
specified.

DiscTouchLnk_New Connects a discrete touch link to the object
specified.

LocationLnk_New Connects a horizontal or vertical location
link to the object specified.

OrientationLnk_New Connects an orientation link that defines the
specified object's angle of rotation.

PctFillLnk_New Connects a horizontal or vertical percent fill
link to the object specified.

SizeLnk_New Connects a horizontal or vertical size link to
the object specified.

SliderLnk_New Connects a horizontal or vertical slider
touch link to the object specified.

3-8 Chapter 3

Function Description

StmtTouchLnk_New Connects an action touch link to the object
specified. Statements can be associated with
the up, down, and while down conditions to
the object.

StrInputLnk_New Connects a string (message) input link to the
object specified.

StrOutputLnk_New Connects a string (message) output link to
the object specified.

VisibilityLnk_New Connects a visibility link to the object
specified.

 The following function manipulates objects used in links.
Function Description

Stmt_New Creates and validates a block of statements
and returns a handle to the validated
statement.

 Wizard Property Functions
 Wizards are like "smart cells." These wizards contain all of the window objects
necessary to define configurable and sizable cells. A wizard may have properties
that define the smart cell's current configuration. When a user selects the smart cell
for editing, the wizard that created the smart cell displays a dialog that allows the
user to configure the smart cell. The configuration data is stored with the smart cell
as wizard properties.

 The following functions are used to retrieve and store wizard properties:

Function Description

WizProp_Delete Deletes the named wizard property.

WizProp_Find Returns a handle to the named wizard
property.

WizProp_GetBlock Returns the data for a named wizard property
that contains a block of data.

WizProp_GetDouble Returns a floating point value for the named
wizard property.

WizProp_GetDWord Returns a double word (32-bit) value for the
named wizard property.

WizProp_GetExpr Returns the data for a named wizard property
that contains an expression.

Wizard Toolkit Functions 3-9

Function Description

WizProp_GetFont Returns a logical font (Windows standard)
structure for the named wizard property. This
function provides a platform-independent
method to retrieve the logical font structure.

WizProp_GetStmt Returns the data for a named wizard property
that contains a statement.

WizProp_GetString Returns a NULL terminated string for the
named wizard property.

WizProp_New Creates a wizard property with the name and
type specified.

WizProp_SetBlock Sets the data for a named wizard property
that contains a block of data.

WizProp_SetDouble Sets a floating point value for the named
wizard property.

WizProp_SetDWord Sets a double word (32-bit) value for the
named wizard property.

WizProp_SetExpr Sets the data for a named wizard property
that contains an expression.

WizProp_SetFont Sets a logical font (Windows standard)
structure for the named wizard property. This
function provides a platform-independent
method to save the logical font structure.

WizProp_SetStmt Sets the data for a named wizard property
that contains a statement.

WizProp_SetString Sets a NULL terminated string for the named
wizard property.

3-10 Chapter 3

 User Interface Functions
 A set of functions is provided for use in wizard user interfaces to provide consistent
error checking and a common set of user interface controls.
Function Description

WWDlg_CheckExprCtrl Validates the item using the standard
InTouch validation of QuickScript
expressions. Error messages are
automatically displayed when an error is
detected.

WWDlg_CheckTagCtrl Validates the dialog item using the standard
InTouch validation of database tagnames.
Error messages are automatically displayed
when an error is detected.

WWDlg_GetDoubleCtrl Validates the dialog item using standard
InTouch validation rules for floating point
values. The resulting value is returned.

WWDlg_ProcessKeyCtrl Processes messages to the key-equivalent
handling controls. Displays standard InTouch
key-equivalent dialog if requested.

WWDlg_RegisterColorCtrl Registers a dialog item to use the standard
InTouch color choice dialog.

WWDlg_RegisterKeyCtrl Registers a set of dialog items to obtain key-
equivalent handling information for the
wizard.

WWDlg_RegisterTagnameCtrl Registers a dialog item to respond to a
double-click by displaying the standard
tagname selection dialog.

WWDlg_ScriptEdit Displays a generic script editing dialog.

WWDlg_SetDoubleCtrl Sets the dialog item with the character
representation for the floating point value
specified.

WWDlg_UnregisterColorCtrl Unregisters a dialog item that was registered
using WWDlg_RegisterColorCtrl. Any
memory used is freed and the current color
selection is returned.

WWDlg_UnregisterKeyCtrl Unregisters the set of dialog items that were
registered in WWDlg_RegisterKeyCtrl.
Frees any memory associated with the
mapping of dialog items.

WWDlg_UnregisterTagnameCtrl Unregisters a dialog item that was registered
using WWDlgRegisterTagnameCtrl. Any
memory is freed and the control takes on its
standard Windows capabilities.

Wizard Toolkit Functions 3-11

 Database Tag Functions
Database tag functions are used to create, find, and manipulate InTouch database
entries, access names and alarm groups.

 The following functions create, find and delete database tags.
Function Description

Tag_Find Returns the handle of the database tagname
with the given name.

Tag_FindApplTopicItem Returns the handle of the database tagname
with the specified application (server), topic,
and item description.

Tag_New Creates a database tagname with the specified
name, type, and comment.

 The following functions set and retrieve information for a database tag.
Function Description

Tag_GetAccessInfo Returns general access information for a
database tagname.

Tag_GetGroup Returns the group handle for the database
tagname with the given handle.

Tag_GetInfo Returns general information for a database
tagname.

Tag_GetRetentiveInfo Returns retentive information for a database
tagname.

Tag_GetUniqueName Returns a unique database name from
supplied base name.

Tag_GetValueAlarm Returns value alarm fields for a database
tagname.

Tag_SetAccessInfo Set general access information for a database
tagname.

Tag_SetDeviationAlarm Sets deviation alarm fields in a given
tagname.

Tag_SetDiscAlarm Sets discrete alarm fields for a database
tagname.

Tag_SetEventInfo Sets event logging information for a database
tagname.

Tag_SetGroup Sets the group handle for the database
tagname with the given handle.

Tag_SetInfo Sets general information for a database
tagname.

Tag_SetRateOfChangeAlarm Sets rate of change alarm fields in a database
tagname.

3-12 Chapter 3

Function Description

Tag_SetRetentiveInfo Sets retentive information for a database
tagname.

Tag_SetScalingInfo Sets scaling information for a database
tagname.

Tag_SetValueAlarm Sets value alarm fields for a database
tagname.

 The following functions set and return information about tagnames that are type-
specific.
Function Description

AnlgTag_GetInfo Returns the initial value of an analog
tagname.

AnlgTag_SetInfo Sets the initial value of an analog tagname.

DiscTag_GetInfo Returns the initial value of an discrete
tagname.

DiscTag_SetInfo Sets the initial value of an discrete tagname.

StrTag_SetInfo Sets the initial value of a string tagname.

 The following functions manipulate access names required for DDE access name
tags.
Function Description

AccessName_Find Returns the handle of the Access Name with
the given name.

AccessName_FindApplTopic Returns the handle of the Access Name with
the given application and topic.

AccessName_GetInfo Returns access information and the given
access name ID (accID).

AccessName_GetName Returns a pointer to the Access Name via
lpSourceName.

AccessName_GetUniqueName Returns a unique Access Name in the string
specified by Access Name, based on string
specified in basename.

AccessName_New Creates an Access Name with the specified
name and settings.

AccessName_SetInfo Sets access information into a I/OSOURCE.

AccessName_SetName Sets Access Name specified in the
lpSourceName.

4-1

C H A P T E R 4

User Supplied Wizard Functions

This chapter describes in detail, the user supplied functions that are required for the
proper integration and execution of InTouch wizards. The functions' purpose,
syntax, parameters, and return values are also described.

Contents
n Functions Required to Create and Configure Wizards

n Functions Required to Integrate Wizards into InTouch

n Command Wizards

4-2 Chapter 4

 Functions Required to Create and
Configure Wizards

 There are two functions that must be supplied in order for InTouch to place and
configure wizards: Wizard_New and Wizard_Edit. Wizard_New is called when
the wizard is initially placed, resized, or edited. Wizard_Edit is called when the
InTouch application developer double-clicks on a wizard and provides the Wizard
developer with the opportunity to bring up a dialog and solicit input from the
InTouch application developer for configuration.

 Wizard_New
int

Wizard_New(HCHUNK hChunk,
int index,
int left,
int top,
int right,
int bottom,
LPSTR dllName,
WHMEM whData,
int mode,
RECT prevRect,
WHMEM FAR *pwhWizard)

Description Called when a user places, resizes, or edits a wizard.
 Parameter Description

index Refers to the index number of a particular
wizard in a library.

left Left Coordinate of wizard.

top Top Coordinate of wizard.

right Right Coordinate of wizard.

bottom Bottom Coordinate of wizard.

dllName Name of DLL containing wizard code.

whData Pointer to wizard properties.

mode The reason Wizard_New was called.

Value Meaning

MODE_NEW Wizard initially
placed

MODE_SIZE Wizard sized

MODE_EDIT Wizard edited

MODE_RESTORE An undo was issued

User Supplied Wizard Functions 4-3

 Parameter Description

prevRect Previous rectangle coordinates for
Wizard_New call.

pwhWizard Pointer to Wizard Object.

Return Value Error Code for configuration. Otherwise, 0 if there were no errors.

Comments Wizard_New is called when the user initially places a wizard, resizes a wizard, or
configures a wizard. The mode parameter indicates the condition that caused the
Wizard_New to be called.

 Wizard_Edit
int

Wizard_Edit(int index,
WHMEM whData,
HCHUNK hChunk)

Description Allows the user to configure the wizard.
 Parameter Description

index Refers to the index number of a particular
wizard in a library.

whData Pointer to wizard properties.

hChunk Memory allocation handle

Return Value Error Code for configuration. Otherwise, 0 if there were no errors.

Comments Wizard_Edit is called when the user double-clicks on a wizard. Typically a dialog
box will appear that will allow the user to configure specific properties. The wizard
developer will bring up this dialog whenever Wizard_Edit is called by
WindowMaker If there is no Wizard_Edit routine, the Wizard is not configurable.

4-4 Chapter 4

 Functions Required to Integrate
Wizards into InTouch

 To fully integrate a wizard library into the WindowMaker environment two
functions must be supplied: Wizard_GetInfo and WizardLib_GetInfo.
Wizard_GetInfo should return information about a particular wizard and
WizardLib_GetInfo should return information about a given Wizard Library

 Wizard_GetInfo
BOOL

Wizard_GetInfo(int index,
WORD wCommand,
DWORD dwData,
LPVOID lpInfo)

Description Returns information about the wizard based on the value of dwData.
 Parameter Description

index Refers to the index number of a particular
wizard in a library.

wCommand Specifies which property it is requesting
information about.

dwData Specifies more information used in retrieving
information about a specific wizard.

lpInfo Pointer to the returned information

Return Value TRUE if information was returned. Otherwise, FALSE.

Comments The values requested in wCommand and the required actions are listed as follows:
 Command Required Action

WIZ_BITMAP Return HBITMAP for selection dialog.

WIZ_DESCRIPTION Return wizard description string.

WIZ_FLAGS Return general flags for wizard.

Value Meaning

WIZFLAG_NONLITE Set if NON-LITE
mode wizard.

WIZFLAG_NOBREAK Set if NOT breakable
into components.

WIZFLAG_COMMAND Set if command
wizard.

User Supplied Wizard Functions 4-5

 Command Required Action

WIZ_GROUPNAME Return wizard's group descriptive name.

WIZ_HELPINFO Return context sensitive help information.

WIZ_SIZEMODE Return size mode flags for wizard.

WIZSIZE_ASPECT Size X and Y retaining aspect (default).

WIZSIZE_FULL Unrestricted sizing.

WIZSIZE_NONE Not Supported.

WIZ_TBOXBITMAP Return HBITMAP for toolbar.

 The WIZ_BITMAP, and WIZ_TBOXBITMAP commands will use the default
bitmaps if one is not supplied. To supply bitmaps for the wizard, there are three
bitmaps needed:

l 64x64 bitmap for the Wizard Selection Dialog

l 16x16 bitmap for toolbar when the button is up

l 16x16 bitmap for toolbar when the button is pressed

Note The pair of bitmaps used in the toolbar must be identical, except the fill for
the button up should be "buttonface" gray and the fill for the button down should be
white. WindowMaker will automatically create the 3-D border for you. The bitmap
you provide should not be shifted over and down. WindowMaker will handle the
"pressed in" effect automatically when the button is depressed.

4-6 Chapter 4

 WizardLib_GetInfo
BOOL
WizardLib_GetInfo(int index,

WORD wCommand,
DWORD dwData,
LPVOID lpInfo)

Description Returns information about the wizard library based on the value of dwData.
Parameter Description

index Refers to the index number of a particular
wizard in a library.

wCommand Specifies which property it is requesting
information about.

dwData Specifies more information used in retrieving
information about the wizard library.

lpInfo Pointer to the returned information

Return Value TRUE if information was returned. Otherwise, FALSE.

Comments The values requested in wCommand and the required actions are listed in the
following table.
Command Required Action

WIZ_COMPANYNAME Return company description string.

WIZ_LIBNAME Return library descriptive name.

WIZ_NEXTWIZID Return next wizard ID based on the current
wizard ID passed in dwData. Return the first
wizard ID, (generally 1) when dwData is 0.
Return a 0 to indicate that dwData is the last
wizard ID.

WIZ_VERSIONNUM Return library version number.

WIZ_VERSIONSTR Return library version description string.

User Supplied Wizard Functions 4-7

 Command Wizards
 Command wizards are wizards that start processes or applications and do not place
or edit objects. Command wizards are specified by returning
WIZFLAG_COMMAND for the case WIZ_FLAGS in the function
Wizard_GetInfo. If this flag is set, then the functions Wizard_DoCommand must
be provided.

 Wizard_DoCommand
int

Wizard_DoCommand(int index)

Description Allows the user to execute an application or run a process, such as converting a
database.
Parameter Description

index Refers to the index number of a particular
wizard in a library.

Return Value Error Code for configuration. Otherwise, 0 if there were no errors.

Comments Command wizards do not place objects on the window, or allow editing. They
simply execute the code in Wizard_DoCommand. Wizard_DoCommand is called
when the InTouch application developer selects a command wizard from the Wizard
Selection dialog box via the wizard tool or clicks a command wizard button on the
toolbar.

4-8 Chapter 4

5-1

C H A P T E R 5

Style Guide for Wizard Library
Development

This chapter contains our recommended style guide for Wizard libraries. These
guidelines are provided to help you implement good basic wizard development
practices. Taking some time to learn these basic naming conventions now may save
you a lot of time later!

Contents
n Guidelines for Wizard Library Development

5-2 Chapter 5

 Guidelines for Wizard Library
Development

 Each wizard library should be named with a unique mnemonic (referred to as
<name> in this document) that identifies the type of wizards in the library. For
example, SWITCH, METER, and so on. This short abbreviated name will be used
throughout the wizard library to generate names for specific files, functions, defines
and declarations.

 Creating Libraries with Multiple Wizards
 Some changes are required to build a wizard library with multiple wizards. If you
follow these simple naming conventions, the routines become very generic and can
easily handle wizard libraries with any number of wizards. The samples provided
for WizardGet_Info and WizardLib_GetInfo use these naming conventions.

 Assign each wizard in the library a two-digit ID. For example, 01 for the first
wizard. The <name> and <id> will be combined in many places to name files,
functions and defines. For example, METER01.C or Meter01New.

 Use a sample wizard library to obtain standard file name examples, such as
WZMAIN.C, WZSTUB.C. A two-letter prefix should be used to identify your
wizards from any wizards produced by other sources. This will help eliminate
wizard DLLs of the same name. All of the wizards built into InTouch use WZ as the
two-letter identifier. Choose one that makes sense for you.

 Wizard Library Directory
 The naming convention for the directory should be:

 <id prefix><name> (for example, WZMETER).

 The naming convention for the makefile should be:

 named <id prefix><name>.MAK (for example, WZMETER.MAK).

 The makefile will cause the DLL <id prefix><name>.DLL to be built.

Style Guide for Wizard Library Development 5-3

 Wizard C Modules
 Use the standard WZMAIN.C and WZSTUB.C files for the common C modules.
The WZMAIN.C file will have a WZMAIN.H header file for the global
declarations. Typically this H file will have the globals containing the default values
and the string globals containing the property names.

 Each wizard NEW function should be placed in its own C module named using the
form <name><id> where <id> is a two digit ID for the wizard. (for example,
METER02.C will have the wizard new function Meter02New).

 Since it will be very common for a single dialog to be shared by multiple wizards,
each unique wizard dialog should be placed in its own C module. This module
should be named using the form <name><letter> where <letter> is a unique letter
from A to Z assigned to each unique dialog in the wizard library. (for example,
METERA.C will have the wizard dialog procedure MeterADlgProc for the dialog
resource named METERADLG in the resource file.)

 Function Names
 <name><letter>DlgProc Dialog procedure for a unique wizard dialog.

 For example: MeterADlgProc

 <name><id>New Wizard new function for a wizard.

 For example: Meter01New

 WZMAIN.C
 To create the WZMAIN.C file, modify one of a sample wizards that was supplied
with the Wizard Toolkit. Make sure to replace the <name> for the sample library
with your <name> for your wizard library.

 Change the include wz<name>.h.

 Add the necessary forward declarations for the wizard new functions (for example,
Meter01New). Remove the ones for the original sample wizards.

 Add the necessary forward declarations for the wizard dialog procedures (for
example, MeterADlgProc). Remove the ones for the original sample wizards.

 Add the cases to Wizard_Edit to call each of the unique dialogs for the wizards.
For example:
case 1:
case 2:
 DialogBox(hDrawInst, "METERADLG", hDrawWnd,
 MeterADlgProc);
 break;
case 3:
 DialogBox(hDrawInst, "METERBDLG", hDrawWnd,
 MeterBDlgProc);
 break;

 In this example, two wizards (IDs 1 and 2) use the same dialog "METERADLG."

5-4 Chapter 5

 Add the cases to Wizard_New to call each of the wizard new functions for each
wizard. For example,

case 1:
 error = Meter01New(hChunk, index, left, top, right,
 bottom, dllName, whProperties, pwhWizard);
 break;
case 2:
 error = Meter02New(hChunk, index, left, top, right,
 bottom, dllName, whProperties, pwhWizard);
 break;
case 3:
 error = Meter03New(hChunk, index, left,
 top, right, bottom, dllName, whProperties, pwhWizard
);
 break;

 Header File
 Create a header file named <id prefix><name>.h (for example, WZMETER.H) for
your wizard library file. It will contain control IDs for dialogs, defines for
properties, and external definitions for globals containing property names and
property defaults. These property name and default globals are declared in
WZMAIN.H.

 Dialog control IDs are associated with a unique dialog, not a unique wizard.
Therefore, name your control IDs based on each unique dialog they belong to. Use
the naming convention ID_<name><letter>_<description>. For example, the
controls used by wizards of type MeterA would be named:
#define ID_METERA_EXPR 101
#define ID_METERA_GAUGEGROUP 105
#define ID_METERA_GAUGETEXT 106
#define ID_METERA_GAUGEFILLCOLOR 107
#define ID_METERA_GAUGETEXTCOLOR 108

#define ID_METERA_RANGEGROUP 110
#define ID_METERA_MIN 111
#define ID_METERA_MAX 112

#define ID_METERA_TICKGROUP 115
#define ID_METERA_MAJORDIV 116
#define ID_METERA_MINORDIV 117

#define ID_METERA_LABELGROUP 120
#define ID_METERA_DISPLAYLABEL 121
#define ID_METERA_LABELTEXTCOLOR 122
#define ID_METERA_NUMFORMAT 123

Style Guide for Wizard Library Development 5-5

 Remember, property names are usually associated with a unique dialog, not a
unique wizard. Therefore, name your property defines based on the corresponding
unique dialog. Use the naming convention PROP_<name><letter>_<description>.
For example, the properties used by wizards of type MeterA would be named:
#define PROP_METERA_EXPR exprStr
#define PROP_METERA_GAUGETEXT gaugeLabelStr
#define PROP_METERA_GAUGEFILLCOLOR gaugeFillColorStr
#define PROP_METERA_GAUGETEXTCOLOR gaugeTextColorStr
#define PROP_METERA_LABELTEXTCOLOR labelTextColorStr
#define PROP_METERA_MIN minValueStr
#define PROP_METERA_MAX maxValueStr
#define PROP_METERA_MAJORDIV majorDivStr
#define PROP_METERA_MINORDIV minorDivStr
#define PROP_METERA_DISPLAYLABEL displayLabelStr

 It is very possible for more than one wizard to use the property defined in this
example. There should be a dialog for the defined properties that is named
METERADLG in the resource file.

 Default property defines may either be defined as constants or references to globals
declared in WZMAIN.H. For these defines use the naming convention
DEF_<name><id>_<description>. For example, the default defines for button
defaults would be named:
/* Button 5 */

#define DEF_BUTTN05_ON_COLOR RGB(0x00, 0xff, 0x00)
#define DEF_BUTTN05_OFF_COLOR RGB(0xff, 0x00, 0x00)

 /* Button 6 */

#define DEF_BUTTN06_ON_COLOR RGB(0xff, 0x00, 0x00)
#define DEF_BUTTN06_OFF_COLOR RGB(0x80, 0x80, 0x80)

 /* Button 7 */

#define DEF_BUTTN07_ON_COLOR RGB(0x00, 0xff, 0x00)
#define DEF_BUTTN07_OFF_COLOR RGB(0xff, 0x00, 0x00)

 An example for the defaults for the wizards in the TEXT wizard library would be:
#define DEF_TEXT01_TAGNAME tagnameStr
#define DEF_TEXT01_LABEL "Title"

5-6 Chapter 5

 Definition (.DEF) File
 Name the DEF file for the wizard library <id prefix><name>.DEF.

 For example: WZMETER.DEF

 The LIBRARY statement should name the library <id prefix><Name>

 For example: WZMETER

 Remember to export all dialog procedures in addition to the standard wizard DLL
entry points. The standard wizard DLL entry points are:

• Wizard_New

• Wizard_Edit

• Wizard_GetInfo

• WizardLib_GetInfo

 Resource (.RC) File
 Name the resource file <id prefix><name>.RC.

 For example: WZMETER.RC

 Name all bitmap files using the following convention:
 <name><id>M.BMP for Wizard selection dialog box bitmap (for example,

METER04M.BMP)

 <name><id>T.BMP for Toolbar bitmap (for example, METER04T.BMP)

 <name><id>P.BMP for Toolbar pushed in bitmap (for example,
METER04P.BMP)

 Name each bitmap resource the same as the filename, without the period (.). For
example, name all bitmap resources using the following conventions:
 <name><id>MBMP for Wizard selection dialog box bitmap (for example,

METER04M.BMP)

 <name><id>TBMP for Toolbar bitmap (for example, METER04TBMP)

 <name><id>PBMP for Toolbar pushed in bitmap (for example,
METER04P.BMP)

 For example:
METER02TBMP BITMAP MOVEABLE PURE "METER02T.BMP"

 Name each unique wizard dialog resource <name><letter>DLG where <letter> is a
unique letter from A to Z assigned to each unique dialog in the wizard library.

 For example: METERADLG
METERADLG DIALOG DISCARDABLE 9, 24, 250, 66

Style Guide for Wizard Library Development 5-7

 We recommend that all wizard descriptions reside in the STRINGTABLE for the
wizard library. The string table identifier for each wizard is generated using the
following formula:

 Long Description <id> * 2 - 1

 Short Description <id> * 2

STRINGTABLE
BEGIN
1, "Wizard ID #1 Long Description"
2, "Wizard ID #1 Short Description"
3, "Wizard ID #2 Long Description"
4, "Wizard ID #2 Short Description"
5, "Wizard ID #3 Long Description"
6, "Wizard ID #3 Short Description"
END

 Put all wizard descriptions in the STRINGTABLE for the wizard library. The string
table identifier for each wizard is generated using the following formula:

 Long Description <id> * 2 - 1

 Short Description <id> * 2

5-8 Chapter 5

6-1

C H A P T E R 6

Wizard API Function Reference

This chapter is a complete reference manual for the Wizard Toolkit Application
Programming Interface (API). Wizards are implemented using functions in the
Wizard API. All of the Wizard API functions are documented in this chapter. They
are presented in alphabetic order. The purpose, syntax, parameters and possible
return values for all functions are included.

Contents
n Wizard API Function Reference

6-2 Chapter 6

 AccessName_Find
I/OSOURCE

AccessName_Find(LPSTR srcName)

Description Returns the handle of the Access Name with the given name.
 Parameter Description

srcName Points to a null-terminated string containing the
Access Name.

Return Value Handle to the Access Name found. Otherwise, it is 0.

Comments None.

 AccessName_FindApplTopic
I/OSOURCE

AccessName_FindApplTopic(LPSTR application,
LPSTR topic)

Description Returns the handle of the Access Name with the given application and topic.
Parameter Description

application Points to a null-terminated string containing the
application name (for example, "EXCEL"). The
application can also include the node name (for
example, "\\NODE\EXCEL").

topic Points to a null-terminated string containing the I/O
topic (for example, "SHEET1.XLS").

Return Value Handle to the Access Name found. Otherwise, it is 0.

Comments None.

 AccessName_GetInfo
int

AccessName_GetInfo(I/OSOURCE accID,
LPACCESSINFO IpInfo)

Description Returns the access information in the given Access Name ID (accID).
Parameter Description

accID I/OSOURCE that specifies a particular Access
Name.

lpInfo Pointer to the access information structure.

Return Value Error code or 0 if successful.

Comments An error will be returned if the accID is an invalid I/O Source ID.

Wizard API Function Reference 6-3

 AccessName_GetName
int

AccessName_GetName(I/OSOURCE accID,
LPSTR IpSourceName)

Description Returns a pointer to the Access Name via lpSourceName for the given Access Name
ID (accID).
Parameter Description

accID I/OSOURCE that specifies a particular Access
Name.

lpSouceName Pointer to a string containing the Access Name
associated with accID.

Return Value Error code or 0 if successful.

Comments An error will be returned if the accID is an invalid I/O Source ID.

 AccessName_GetUniqueName
int

AccessName_GetName(LPSTR basename,
LPSTR accessname)

Description Returns a unique I/O Access Name in the string specified by Access Name, based
on the string specified in base name.
Parameter Description

basename Pointer to a string containing the base for the unique
Access Name.

accessname Pointer to a string containing the unique Access
Name.

Return Value Error code or 0 if successful.

Comments An error will be returned if a unique name cannot be found.

6-4 Chapter 6

 AccessName_New
I/OSOURCE

AccessName_New(LPSTR srcName,
LP_ACCESSNAMEINFO lpInfo)

Description Creates an Access Name with the specified name and settings.
Parameter Description

srcName Points to a null-terminated string containing the
Access Name.

lpInfo Points to an ACCESSNAMEINFO structure that
contains the Access Name settings.

Return Value The return value is the handle of the Access Name if the function is successful.
Otherwise, it is 0.

Comments This function will fail if the Access Name already exists.

 AccessName_SetInfo
int

AccessName_SetInfo(I/OSOURCE accID,
LP_ACCESSNAME lpInfo)

Description Sets the Access Name information into the I/OSOURCE specified in accID.
Parameter Description

accID I/OSOURCE identifier.

lpInfo Pointer to the Access Name information structure.

Return Value Error code.

Comments None.

Wizard API Function Reference 6-5

 AccessName_SetName
int

AccessName_SetName(I/OSOURCE accID,
LPSTR lpSourceName)

Description Sets the Access Name specified in lpSourceName for the given Access Name ID
(accID).
Parameter Description

accID I/OSOURCE that specifies a particular Access
Name.

lpSourceName Pointer to a string containing the Access Name
associated with accID.

Return Value Error code or 0 if successful.

Comments An error will be returned if the accID is an invalid I/O Source ID.

 AlarmObj_New
WHMEM

AlarmObj_New(HCHUNK hChunk,
WHMEM whParent,
int left,
int top,
int right,
int bottom,
WORD alarmType,
WORD options,
LONG windowColor,
LONG borderColor,
LONG titleBarColor,
LONG titleTextColor,
LONG unAckAlmColor,
LONG ackColor,
LONG rtnColor,
LONG evtColor,
LPSTR alarmFormat,
LPSTR alarmGroup,
LPSTR fromPriority,
LPSTR toPriority,
LPSTR prevPageTagname,
LPSTR nextPageTagname)

6-6 Chapter 6

Description Creates an alarm object at the specified location in the current application window.
Parameter Description

hChunk Handle to the memory section containing the object.

whParent Handle to the parent object (symbol, group, or
wizard) that will contain this object. 0 indicates
there is no parent object.

left Specifies the x-coordinate of the upper-left corner.

top Specifies the y-coordinate of the upper-left corner.

right Specifies the x-coordinate of the lower-right corner.

bottom Specifies the y-coordinate of the lower-right corner.

alarmType Specifies the flags that determine the alarm type.
This parameter can be one of the following values:

Value Meaning

ALARM_SUMMARY Specifies an alarm
summary object.

ALARM_HISTORY Specifies an alarm
history object.

options Specifies the flags that determine the alarm object
options. This parameter can be a combination of the
following values:

Value Meaning

ALARM_
TITLES

Specifies a title bar for the alarm
object with labels for each column.

ALARM_
SERVER

Specifies the display of alarms/events
collected by the server node. This is
used in conjunction with the
master/slave configuration.

windowColor Specifies the alarm object's background color.
Colors are specified in Windows standard RGB
format.

borderColor Specifies the color of the alarm object's border.
Colors are specified in Windows standard RGB
format.

titleBarColor Specifies the color of the alarm object's title bar.
Colors are specified in Windows standard RGB
format.

titleTextColor Specifies the color of the alarm object's column
titles in the title bar. Colors are specified in
Windows standard RGB format.

Wizard API Function Reference 6-7

Parameter Description

unAckAlmColor Specifies the text color of the alarm object's
unacknowledged alarms. Colors are specified in
Windows standard RGB format.

ackColor Specifies the text color of the alarm object's
acknowledged alarms. Colors are specified in
Windows standard RGB format.

rtnColor Specifies the text color of the alarm object's return
to normal alarms. Colors are specified in Windows
standard RGB format. Not used for
ALARM_SUMMARY type.

evtColor Specifies the text color of the alarm object's events.
Colors are specified in Windows standard RGB
format. Not used for ALARM_SUMMARY type.

alarmFormat Points to a null-terminated string containing the
format specification for the alarm information.

alarmGroup Points to a null-terminated string containing the
alarm group tagname or group variable tagname to
use for the link. For example, $System displays all
alarms in all groups.

fromPriority Points to a null-terminated string containing the
specification for the highest alarm priority level for
the range of priorities that will be displayed in the
alarm object. An analog tagname or constant value
can be specified. For example, "FromPri" or "1".

toPriority Points to a null-terminated string containing the
specification for the lowest alarm priority level for
the range of priorities that will be displayed in the
alarm object. An analog tagname or constant value
can be specified. For example, "ToPri" or "999".

prevPageTagname Points to a null-terminated string containing the
discrete tagname used to start the display to page
up. An empty string indicates no page up capability.

nextPageTagname Points to a null-terminated string containing the
discrete tagname used to start the display to page
down. An empty string indicates no page down
capability.

Return Value The return value is the handle of the object if the function is successful. Otherwise,
it is whNull.

Comments None.

6-8 Chapter 6

 AnlgAlarmLnk_New
WHMEM

AnlgAlarmLnk_New(HCHUNK hChunk,
WHMEM whObj,
WORD linkType,
WORD alarmType,
LPSTR tagname,
LONG FAR colors[5])

Description Creates an analog alarm link for the object specified.
Parameter Description

hChunk Handle to the memory section containing the object
for which the link is being created.

whObj Handle to the object for which the link is being
created.

linkType Specifies the flags that determine the link type. This
parameter can be one of the following values:

Value Meaning

LINE_LINK Specifies a line
color link based on
alarm status.

TEXT_LINK Specifies a text
color link based on
alarm status.

FILL_LINK Specifies a fill color
link based on alarm
status.

alarmType Specifies the flags that determine the alarm type.
This parameter can be one of the following values:

Value Meaning

VALUE_ALARM_LINK Specifies a value
alarm link. A value
alarm can be in one
of five states: LoLo,
Lo, Normal, Hi,
HiHi.

DEV_ALARM_LINK Specifies a deviation
alarm link. A
deviation alarm can
be in one of three
states: Normal,
Minor, Major.

ROC_ALARM_LINK Specifies a rate of
change (ROC) alarm
link. A ROC alarm
has two states:
Normal, ROC.

Wizard API Function Reference 6-9

Parameter Description

tagname Points to a null-terminated string containing the
analog tagname to use for the link.

colors Points to an array of five LONG types. Each LONG
specifies an alarm state color. Colors are specified
in Windows standard RGB format.

The index for each item in the array is defined as
follows for the VALUE_ALARM_LINK alarm
type.

Value Meaning

0 Specifies the color for
the LoLo alarm status.

1 Specifies the color for
the Lo alarm status.

2 Specifies the color for
the Normal alarm
status.

3 Specifies the color for
the Hi alarm status.

4 Specifies the color for
the HiHi alarm status.

The index for each
item in the array is
defined as follows for
the
DEV_ALARM_LINK
alarm type.

0 Specifies the color for
the Normal alarm
status.

1 Specifies the color for
the Minor Deviation
alarm status.

2 Specifies the color for
the Major Deviation
alarm status.

6-10 Chapter 6

Value Meaning

3,4 Unused, but must be
passed.

The index for each
item in the array is
defined as follows for
the
ROC_ALARM_LINK
alarm type.

0 Specifies the color for
the Normal alarm
status.

1 Specifies the color for
the ROC alarm status.

2,3,4 Unused, but must be
passed.

Return Value The return value is the handle of the link if the function is successful. Otherwise, it
is whNull.

Comments If a zero (0) is returned, check for invalid tagname, link type or alarm type.

Wizard API Function Reference 6-11

 AnlgColorLnk_New
WHMEM

AnlgColorLnk_New(HCHUNK hChunk,
WHMEM whObj,
WORD linkType,
LPSTR expression,
REAL FAR value[4],
LONG FAR colors[5])

Description Creates an analog fill, text, or line link for the object specified. Five value ranges
are defined by specifying four breakpoints. Five different colors can be selected
which will be displayed as the value range changes.
Parameter Description

hChunk Handle to the memory section containing the object
for which the link is being created.

whObj Handle to the object for which the link is being
created.

linkType Specifies the flags that determine the link type. This
parameter can be one of the following values:

Value Meaning

LINE_LINK Specifies a line
color link based on
alarm status.

TEXT_LINK Specifies a text
color link based on
alarm status.

FILL_LINK Specifies a fill color
link based on alarm
status.

expression Points to a null-terminated string containing the
analog expression or tagname to use for the link.

value Points to an array of four REAL types. Each REAL
specifies a value range breakpoint. Four breakpoints
are used to define the five value ranges. Each item
in the array must be greater than the previous item.

colors Points to an array of five LONG types. Each LONG
specifies a value range color. Index 0 of the array
corresponds to the lowest value range. Index 4 of
the array corresponds to the highest value range.
Colors are specified in Windows standard RGB
format.

Return Value The return value is the handle of the link if the function is successful. Otherwise, it
is whNull.

Comments If a zero (0) is returned, check for invalid analog expression or link type.

6-12 Chapter 6

 AnlgInputLnk_New
WHMEM

AnlgInputLnk_New(HCHUNK hChunk,
WHMEM whObj,
LPSTR tagname,
LPSTR userMsg,
BOOL bUseKeypad,
BOOL bInputOnly,
BYTE cKeyFlags,
WORD wVirtKey,
REAL minValue,
REAL maxValue)

Description Creates an analog input link for the object specified.
Parameter Description

hChunk Handle to the memory section containing the object
for which the link is being created.

whObj Handle to the object for which the link is being
created.

tagname Points to a null-terminated string containing the
analog tagname to use for the link.

userMsg Points to a null-terminated string containing the
message or instruction to display if the bUseKeypad
option is enabled.

bUseKeypad Specifies the use of an on-screen keypad for
entering new values if this value is non-zero.

bInputOnly Specifies this link as input only, the value entered
will not be displayed, if this value is non-zero. This
setting only applies to objects that have text display
associated with them (for example, a push button).

cKeyFlags Specifies the flags used when a keyboard key is
assigned to this link. This parameter can be a
combination of the following values:

Value Meaning

TOUCH_KS_SHIFT Specifies the SHIFT
key must be held
down in addition to
the key specified.

TOUCH_KS_CTRL Specifies the CTRL
key must be held
down in addition to
the key specified.

0 Specifies that only
the specified key
must be held down.

Wizard API Function Reference 6-13

Parameter Description

wVirtKey Specifies the keyboard key equivalent assigned to
this link. This value is 0 if there is no keyboard
equivalent.

minValue Specifies the minimum allowable input value.

maxValue Specifies the maximum allowable input value.

Return Value The return value is the handle of the link if the function is successful. Otherwise, it
is whNull.

Comments If a zero (0) is returned, check for invalid tagname or too long a userMsg variable.

 AnlgOutputLnk_New
WHMEM

AnlgOutputLnk_New(HCHUNK hChunk,
WHMEM whObj,
LPSTR expression)

Description Creates an analog output link for the object specified.
Parameter Description

hChunk Handle to the memory section containing the object
for which the link is being created.

whObj Handle to the object for which the link is being
created.

expression Points to a null-terminated string containing the
analog expression or tagname to use for the link.

Return Value The return value is the handle of the link if the function is successful. Otherwise, it
is whNull.

Comments If a zero (0) is returned, expression is NULL, too long or invalid.

 AnlgTag_GetInfo
int

AnlgTag_GetInfo(DBHND dbHnd,
LP_ANLGTAGINFO lpAnlgInfo)

Description Returns the analog tagname for the database tagname with the given handle.
Parameter Description

dbHnd Handle to the database tagname.

lpAccessInfo Pointer to the analog tagname information structure.

Return Value Error code.

Comments None.

6-14 Chapter 6

 AnlgTag_SetInfo
int

AnlgTag_SetInfo(DBHND dbHnd,
LP_ANLGTAGINFO lpAnlgInfo)

Description Sets the analog tagname information for a database tagname with the given handle.
Parameter Description

dbHnd Handle to the database tagname.

lpAnlgInfo Pointer to the analog tagname information structure.

Return Value Error code.

Comments None.

 BitmapObj_New
WHMEM

BitmapObj_New(HCHUNK hChunk,
WHMEM whParent,
int left,
int top,
int right,
int bottom,
HBITMAP hBitmap)

Description Creates a bitmap object at the specified location in the current application window.
Parameter Description

hChunk Handle to the memory section containing the object.

whParent Handle to the parent object (symbol, group, or
wizard) that will contain this object. 0 indicates
there is no parent object.

left Specifies the x-coordinate of the upper-left corner.

top Specifies the y-coordinate of the upper-left corner.

right Specifies the x-coordinate of the lower-right corner.

bottom Specifies the y-coordinate of the lower-right corner.

hBitmap Handle of the bitmap to "paste" into the object. The
bitmap is a standard Windows bitmap.

Return Value The return value is the handle of the object if the function is successful. Otherwise,
it is whNull.

Comments The object will be created if hBitmap is NULL.

Wizard API Function Reference 6-15

 BlinkLnk_New
WHMEM

BlinkLnk_New(HCHUNK hChunk,
WHMEM whObj,
LPSTR expression,
BOOL bInvisibleWhenBlinked,
LONG lineColor,
LONG fillColor,
LONG textColor,
int blinkSpeed)

Description Creates a blink link for the object specified.
Parameter Description

hChunk Handle to the memory section containing the object
for which the link is being created.

whObj Handle to the object for which the link is being
created.

expression Points to a null-terminated string containing the
analog expression or tagname to use for the link.

bInvisibleWhenBlinked Specifies that the object will blink by disappearing
and reappearing if this value is non-zero. Otherwise,
the object will blink by changing the specified line,
fill and text color attributes.

lineColor Specifies the object's line color. Colors are specified
in Windows standard RGB format.

fillColor Specifies the object's fill color. Colors are specified
in Windows standard RGB format.

textColor Specifies the object's text color. Colors are specified
in Windows standard RGB format.

blinkSpeed Specifies the blinking speed for the object. The
following values are defined to specify the blink
speed.

Value Meaning

BLINK_SLOW Specifies the slow
blink speed as
defined in InTouch.

BLINK_MEDIUM Specifies the
medium blink speed
as defined in
InTouch.

BLINK_FAST Specifies the fast
blink speed as
defined in InTouch.

Return Value The return value is the handle of the link if the function is successful. Otherwise, it
is whNull.

Comments If a zero (0) is returned, if expression is NULL, too long or invalid.

6-16 Chapter 6

 ButtonObj_New
WHMEM

ButtonObj_New(HCHUNK hChunk,
WHMEM whParent,
int left,
int top,
int right,
int bottom,
LPSTR text)

Description Creates a button object at the specified location in the current application window.
Parameter Description

hChunk Handle to the memory section containing the object.

whParent Handle to the parent object (symbol, group, or
wizard) that will contain this object. 0 indicates
there is no parent object.

left Specifies the x-coordinate of the upper-left corner.

top Specifies the y-coordinate of the upper-left corner.

right Specifies the x-coordinate of the lower-right corner.

bottom Specifies the y-coordinate of the lower-right corner.

text Points to a null-terminated string containing the
button's text.

Return Value The return value is the handle of the object if the function is successful. Otherwise,
it is whNull.

Comments The function will fail if buttonbold is greater than MAX_BUTTON_STRINGLEN.

Wizard API Function Reference 6-17

 DisableLnk_New
WHMEM

DisableLnk_New(HCHUNK hChunk,
WHMEM whObj,
LPSTR expression,
BOOL disableWhenTrue)

Description Creates a disable link for the object specified.
Parameter Description

hChunk Handle to the memory section containing the object
for which the link is being created.

whObj Handle to the object for which the link is being
created.

expression Points to a null-terminated string containing the
analog expression or tagname to use for the link.

disableWhenTrue If this value is non-zero, the object's touch
capability is disabled when the disable expression
evaluates to a non-zero value. Otherwise, the
object's touch capability is disabled when the
disable expression evaluates to zero.

Return Value The return value is the handle of the link if the function is successful. Otherwise, it
is whNull.

Comments None.

6-18 Chapter 6

 DiscAlarmLnk_New
WHMEM

DiscAlarmLnk_New(HCHUNK hChunk,
WHMEM whObj,
WORD linkType,
LPSTR tagname,
LONG alarmColor,
LONG normalColor)

Description Creates a discrete alarm link for the object specified.
Parameter Description

hChunk Handle to the memory section containing the object
for which the link is being created.

whObj Handle to the object for which the link is being
created.

linkType Specifies the flags that determine the link type. This
parameter can be one of the following values:

Value Meaning

LINE_LINK Specifies a line
color link based on
alarm status.

TEXT_LINK Specifies a text
color link based on
alarm status.

FILL_LINK Specifies a fill color
link based on alarm
status.

tagname Points to a null-terminated string containing the
discrete tagname to use for the link.

alarmColor Specifies the color when the tagname is in alarm
state. Colors are specified in Windows standard
RGB format.

normalColor Specifies the color when the tagname is not in alarm
state. Colors are specified in Windows standard
RGB format.

Return Value The return value is the handle of the link if the function is successful. Otherwise, it
is whNull.

Comments If a zero (0) is returned, check for invalid tagname or linkType.

Wizard API Function Reference 6-19

 DiscColorLnk_New
WHMEM

DiscColorLnk_New(HCHUNK hChunk,
WHMEM whObj,
WORD linkType,
LPSTR expression,
LONG onColor,
LONG offColor)

Description Creates a discrete fill, text, or line link for the object specified.
Parameter Description

hChunk Handle to the memory section containing the object
for which the link is being created.

whObj Handle to the object for which the link is being
created.

linkType Specifies the flags that determine the link type. This
parameter can be one of the following values:

Value Meaning

LINE_LINK Specifies a line
color link based on
alarm status.

TEXT_LINK Specifies a text
color link based on
alarm status.

FILL_LINK Specifies a fill color
link based on alarm
status.

expression Points to a null-terminated string containing the
discrete expression or tagname to use for the link.

onColor Specifies the color when the expression evaluates to
"on" (non-zero). Colors are specified in Windows
standard RGB format.

offColor Specifies the color when the expression evaluates to
"off" (zero). Colors are specified in Windows
standard RGB format.

Return Value The return value is the handle of the link if the function is successful. Otherwise, it
is whNull.

Comments If a zero (0) is returned, expression is or invalid, or linkType is invalid.

6-20 Chapter 6

 DiscInputLnk_New
WHMEM

DiscInputLnk_New(HCHUNK hChunk,
WHMEM whObj,
LPSTR tagname,
LPSTR userMsg,
LPSTR onMsg,
LPSTR offMsg,
LPSTR setMsg,
LPSTR resetMsg,
BOOL bInputOnly,
BYTE cKeyFlags,
WORD wVirtKey)

Description Creates a discrete input link for the object specified.
Parameter Description

hChunk Handle to the memory section containing the object
for which the link is being created.

whObj Handle to the object for which the link is being
created.

tagname Points to a null-terminated string containing the
discrete tagname to use for the link.

userMsg Points to a null-terminated string containing the
message or instruction to display when the link for
this object is activated.

onMsg Points to a null-terminated string containing the
message to display when the tagname has an "on"
(non-zero) value. This message is displayed only for
objects that have a text field.

offMsg Points to a null-terminated string containing the
message to display when the tagname has an "off"
(zero) value. This message is displayed only for
objects that have a text field.

setMsg Points to a null-terminated string containing the
label for the "Set" button that appears when this link
is activated. The default label, "Set" will be used if
this parameter is the empty string ("").

resetMsg Points to a null-terminated string containing the
label for the "Reset" button that appears when this
link is activated. The default label, "Reset" will be
used if this parameter is the empty string ("").

Wizard API Function Reference 6-21

Parameter Description

bInputOnly Specifies this link as input only, the value entered
will not be displayed, if this value is non-zero. This
setting only applies to objects that have text display
associated with them (for example, a push button).

cKeyFlags Specifies the flags used when a keyboard key is
assigned to this link. This parameter can be a
combination of the following values:

Value Meaning

TOUCH_KS_SHIFT Specifies the SHIFT
key must be held
down in addition to
the key specified.

TOUCH_KS_CTRL Specifies the CTRL
key must be held
down in addition to
the key specified.

0 Specifies that only
the specified key
must be held down.

wVirtKey Specifies the keyboard key equivalent assigned to
this link. This value is 0 if there is no keyboard
equivalent.

Return Value The return value is the handle of the link if the function is successful. Otherwise, it
is whNull.

Comments If a zero (0) is returned, tagname is NULL, too long or invalid userMsg, onMsg,
offMsg, setMsg is NULL or too long.

6-22 Chapter 6

 DiscOutputLnk_New
WHMEM

DiscOutputLnk_New(HCHUNK hChunk,
WHMEM whObj,
LPSTR expression,
LPSTR onMsg,
LPSTR offMsg)

Description Creates a discrete output link for the object specified.
Parameter Description

hChunk Handle to the memory section containing the object
for which the link is being created.

whObj Handle to the object for which the link is being
created.

expression Points to a null-terminated string containing the
expression or tagname to use for the link.

onMsg Points to a null-terminated string containing the
message to display when the tagname has an "on"
(non-zero) value. This message is displayed only for
objects that have a text field.

offMsg Points to a null-terminated string containing the
message to display when the tagname has an "off"
(zero) value. This message is displayed only for
objects that have a text field.

Return Value The return value is the handle of the link if the function is successful. Otherwise, it
is whNull.

Comments If a zero (0) is returned, expression is NULL, too long or invalid onMsg, offMsg, is
NULL or too long.

 DiscTag_GetInfo
int

DiscTag_GetInfo(DBHND dbHnd,
LP_DISCTAGINFO lpDiscInfo)

Description Returns the discrete tagname information for the database tagname with the given
handle.
Parameter Description

dbHnd Handle to the database tagname.

lpDiscInfo Pointer to the discrete tagname information
structure.

Return Value Error code.

Comments None.

Wizard API Function Reference 6-23

 DiscTag_SetInfo
int

DiscTag_SetInfo(DBHND dbHnd,
LP_DISCTAGINFO lpDiscInfo)

Description Sets the discrete tagname information for a database tagname with the given handle.
Parameter Description

dbHnd Handle to the database tagname.

lpDiscInfo Pointer to the discrete tagname information
structure.

Return Value Error code.

Comments None.

 DiscTouchLnk_New
WHMEM

DiscTouchLnk_New(HCHUNK hChunk,
WHMEM whObj,
LPSTR tagname,
WORD actionType,
BYTE cKeyFlags,
WORD wVirtKey)

Description Creates a discrete touch link for the object specified.
Parameter Description

hChunk Handle to the memory section containing the object
for which the link is being created.

whObj Handle to the object for which the link is being
created.

tagname Points to a null-terminated string containing the
discrete tagname to use for the link.

actionType Specifies the flags that determine the action type for
the touch link. This parameter can be one of the
following values:

Value Meaning

ACTION_DIRECT Specifies the direct
action that will set
the value equal to 1
when the button is
pressed and held
down. The value
automatically resets
to 0 when the button
is released.

6-24 Chapter 6

Value Meaning

ACTION_REVERSE Specifies the reverse
action that will set
the value equal to 0
when the button is
pressed and held
down. The value
automatically resets
to 1 when the button
is released.

ACTION_TOGGLE Specifies the toggle
action that will set
the value to 1 if it is
currently 0 and 0 if
the value is currently
1 when the button is
pressed.

ACTION_RESET Specifies the reset
action that will set
the value to 0 when
the button is
pressed.

ACTION_SET Specifies the set
action that will set
the value to 1 when
the button is
pressed.

cKeyFlags Specifies the flags used when a keyboard key is
assigned to this link. This parameter can be a
combination of the following values:

Value Meaning

TOUCH_KS_SHIFT Specifies the SHIFT
key must be held
down in addition to
the key specified.

TOUCH_KS_CTRL Specifies the CTRL
key must be held
down in addition to
the key specified.

0 Specifies that only
the specified key
must be held down.

Wizard API Function Reference 6-25

Parameter Description

wVirtKey Specifies the keyboard key equivalent assigned to
this link. This value is 0 if there is no keyboard
equivalent.

Return Value The return value is the handle of the link if the function is successful. Otherwise, it
is whNull.

Comments If a zero (0) is returned, tagname is NULL or too long; or actionType is invalid.

 DllObj_New
WHMEM

DllObj_New(HCHUNK hChunk,
WHMEM whParent,
int left,
int top,
int right,
int bottom,
LPSTR dllName,
DWORD dllData)

Description Creates a DLL object at the specified location in the current application window.
Currently available DLL objects include the InTouch SPC pareto, histogram, and
control chart objects.
Parameter Description

hChunk Handle to the memory section containing the object.

whParent Handle to the parent object (symbol, group, or
wizard) that will contain this object. 0 indicates
there is no parent object.

left Specifies the x-coordinate of the upper-left corner.

top Specifies the y-coordinate of the upper-left corner.

right Specifies the x-coordinate of the lower-right corner.

bottom Specifies the y-coordinate of the lower-right corner.

dllData Specifies data unique to each DLL that initializes
the object.

dllName Points to a null-terminated string containing the
name of the DLL capable of creating the object.
"SPCDLL":

Value Meaning

SPC_CONTROL Create an SPC
control chart.

SPC_HISTOGRAM Create an SPC
histogram chart.

SPC_PARETO Create an SPC
pareto chart.

Return Value The return value is the handle of the object if the function is successful. Otherwise,
it is whNull.

Comments None.

6-26 Chapter 6

 EllipseObj_New
WHMEM

EllipseObj_New(HCHUNK hChunk,
WHMEM whParent,
int left,
int top,
int right,
int bottom)

Description Creates an ellipse object at the specified location in the current application window.
Parameter Description

hChunk Handle to the memory section containing the object.

whParent Handle to the parent object (symbol, group, or
wizard) that will contain this object. 0 indicates
there is no parent object.

left Specifies the x-coordinate of the upper-left corner.

top Specifies the y-coordinate of the upper-left corner.

right Specifies the x-coordinate of the lower-right corner.

bottom Specifies the y-coordinate of the lower-right corner.

Return Value The return value is the handle of the object if the function is successful. Otherwise,
it is whNull.

Comments None.

Wizard API Function Reference 6-27

 Font_Scale
VOID

Font_Scale(HWND hWnd,
LPLOGFONT lFnt,
LPRECT old,
LPRECT new,
int len,
LPSTR text)

Description Linearly scales the logical font supplied using the old and new rectangles and the
string specified.
Parameter Description

hWnd NULL must be passed for this parameter.

lFnt Points to a LOGFONT structure that defines the
characteristics of the logical font used to display the
text in the rectangle specified by the old parameter.
The scaled font will be returned in this parameter.
LOGFONT is a Windows structure.

old Points to a RECT structure that defines the original
rectangle that was used to display the text specified
by the text parameter.

new Points to a RECT structure that defines the new
rectangle that will be used to display the text
specified by the text parameter.

len Specifies the number of bytes in the string.

text Points to the character string used to scale the
logical font within the rectangle specified.

Return Value None.

Comments The old and new RECT structures set the proportion to change the text.

6-28 Chapter 6

 GroupObj_New
WHMEM

GroupObj_New(HCHUNK hChunk,
WHMEM whParent,
int left,
int top,
int right,
int bottom)

Description Creates a group (cell) object at the specified location in the current application
window. Populate the group with other objects by using this object's handle as the
parent handle.
Parameter Description

hChunk Handle to the memory section containing the object.

whParent Handle to the parent object (symbol, group, or
wizard) that will contain this object. 0 indicates
there is no parent object.

left Specifies the x-coordinate of the upper-left corner.

top Specifies the y-coordinate of the upper-left corner.

right Specifies the x-coordinate of the lower-right corner.

bottom Specifies the y-coordinate of the lower-right corner.

Return Value The return value is the handle of the object if the function is successful. Otherwise,
it is whNull.

Comments None.

Wizard API Function Reference 6-29

 HistTrendObj_New
WHMEM

HistTrendObj_New(HCHUNK hChunk,
WHMEM whParent,
int left,
int top,
int right,
int bottom,
LPSTR tagname,
LONG chartColor,
LONG borderColor,
WORD spanUnits,
DWORD spanTime,
WORD displayMode,
WORD options)

Description Creates a historical trend object at the specified location in the current application
window.
Parameter Description

hChunk Handle to the memory section containing the object.

whParent Handle to the parent object (symbol, group, or
wizard) that will contain this object. 0 indicates
there is no parent object.

left Specifies the x-coordinate of the upper-left corner.

top Specifies the y-coordinate of the upper-left corner.

right Specifies the x-coordinate of the lower-right corner.

bottom Specifies the y-coordinate of the lower-right corner.

tagname Points to a null-terminated string containing a
historical trend tagname.

chartColor Specifies the color of the chart's background. Colors
are specified in Windows standard RGB format.

borderColor Specifies the color of the chart's border. Colors are
specified in Windows standard RGB format.

spanUnits Specifies the flags that determine the measurement
units for the spanTime parameter. This parameter
can be one of the following values:

Value Meaning

TIME_SEC Specifies units as
seconds.

TIME_MIN Specifies units as
minutes.

6-30 Chapter 6

Value Meaning

TIME_HR Specifies units as
hours.

TIME_DAY Specifies units as
days.

spanTime Specifies the historical trend object's time span in
units specified by the spanUnits parameter. This
parameter can be a value from 1 to 999.

displayMode Specifies the flags that determine the initial display
mode. This parameter can be one of the following
values:

Value Meaning

HTREND_MODE_AVE Specifies average
value data display.

HTREND_MODE_MINMAX Specifies minimum
and maximum data
display.

options Specifies the flags that determine the trend options.
This parameter can be a combination of the
following values:

Value Meaning

TREND_RT_CHANGES Specifies that run-
time changes to the
historical trend are
allowed.

Return Value The return value is the handle of the object if the function is successful. Otherwise,
it is whNull.

Comments Possible error conditions include, invalid spanUnits, spanTime, displayMode,
tagname (not a historical tagname type).

Defaults are taken for colors, labels, division information and pen colors.

If the specified tagname does not exist, one will be created.

Wizard API Function Reference 6-31

 LineObj_New
WHMEM

LineObj_New(HCHUNK hChunk,
WHMEM whParent,
int x1,
int y1,
int x2,
int y2)

Description Creates a line object at the specified location in the current application window.
Parameter Description

hChunk Handle to the memory section containing the object.

whParent Handle to the parent object (symbol, group, or
wizard) that will contain this object. 0 indicates
there is no parent object.

x1 Specifies the x-coordinate of the beginning of the
line.

y1 Specifies the y-coordinate of the beginning of the
line.

x2 Specifies the x-coordinate of the end of the line.

y2 Specifies the y-coordinate of the end of the line.

Return Value The return value is the handle of the object if the function is successful. Otherwise,
it is whNull.

Comments None.

6-32 Chapter 6

 LocationLnk_New
WHMEM

LocationLnk_New(HCHUNK hChunk,
WHMEM whObj,
WORD linkType,
WORD referenceType,
LPSTR expression,
REAL minValue,
REAL maxValue,
int minPosition,
int maxPosition)

Description Creates a horizontal or vertical location link for the object specified.
Parameter Description

hChunk Handle to the memory section containing the object
for which the link is being created.

whObj Handle to the object for which the link is being
created.

linkType Specifies the flags that determine the link type. This
parameter can be one of the following values:

Value Meaning

VERT_LINK Specifies a vertical
link.

HORIZ_LINK Specifies a
horizontal link.

referenceType Specifies the flags that determine the reference type.
This parameter can be one of the following values:

Value Meaning

LINK_LEFT Specifies that the
object will be
moved using the
object's left side as
its origin. This value
is valid for a
HORIZ_LINK.

LINK_MIDDLE Specifies that the
object will be
moved using the
object's horizontal
midpoint as its
origin. This value is
valid for a
HORIZ_LINK.

Wizard API Function Reference 6-33

Value Meaning

LINK_RIGHT Specifies that the
object will be
moved using the
object's right side as
its origin. This value
is valid for a
HORIZ_LINK.

LINK_TOP Specifies that the
object will be
moved using the
object's top as its
origin. This value is
valid for a
VERT_LINK.

LINK_CENTER Specifies that the
object will be
moved using the
object's vertical
midpoint as its
origin. This value is
valid for a
VERT_LINK.

LINK_BOTTOM Specifies that the
object will be
moved using the
object's bottom as its
origin. This value is
valid for a
VERT_LINK.

expression Points to a null-terminated string containing the
analog expression or tagname to use for the link.

minValue Specifies the value when the object is at its highest
(VERT_LINK) or leftmost (HORIZ_LINK)
position.

maxValue Specifies the value when the object is at its lowest
(VERT_LINK) or rightmost (HORIZ_LINK)
position.

minPosition Specifies the number of pixels the object will move
up (VERT_LINK) or left (HORIZ_LINK) from its
current position in relation to the values specified
for the minValue and maxValue parameters.

6-34 Chapter 6

Parameter Description

maxPosition Specifies the number of pixels the object will move
down (VERT_LINK) or right (HORIZ_LINK) from
its current position in relation to the values specified
for the minValue and maxValue parameters.

Return Value The return value is the handle of the link if the function is successful. Otherwise, it
is whNull.

Comments If a zero (0) is returned, expression is NULL, too long or invalid or, linkType or
referenceType is incorrect.

 Obj_Delete
BOOL

Obj_Delete(HCHUNK hChunk,
WHMEM whObj)

Description Deletes the specified window object.
Parameter Description

hChunk Handle to the memory section containing the object.

whObj Handle to the object to delete.

Return Value The return value is TRUE if the function is successful. Otherwise, it is FALSE.

Comments None.

Wizard API Function Reference 6-35

 OrientationLnk_New
WHMEM

OrientationLnk_New(HCHUNK hChunk,
WHMEM whObj,
LPSTR expression,
REAL CCWmaxValue,
REAL CWmaxValue,
REAL CCWmaxDegrees,
REAL CWmaxDegrees,
REAL xOffset,
REAL yOffset)

Description Creates an orientation link that defines the specified object's angle of rotation.
Parameter Description

hChunk Handle to the memory section containing the object
for which the link is being created.

whObj Handle to the object for which the link is being
created.

expression Points to a null-terminated string containing the
analog expression or tagname to use for the link.

CCWmaxValue Specifies the value when the object is rotated to its
maximum counter-clockwise position.

CWmaxValue Specifies the value when the object is rotated to its
maximum clockwise position.

CCWmaxDegrees Specifies the maximum number of degrees the
object will rotate counter-clockwise (starting at
12:00) from its current position in relation to the
values specified for the CCWmaxValue and
CWmaxValue parameters.

CWmaxDegrees Specifies the maximum number of degrees the
object will rotate clockwise (starting at 12:00) from
its current position in relation to the values specified
for the CCWmaxValue and CWmaxValue
parameters.

xOffset Specifies the number of pixels the object's rotation
centerpoint is moved horizontally from the
centerpoint of the object (positive values are right).

yOffset Specifies the number of pixels the object's rotation
centerpoint is moved vertically from the centerpoint
of the object (positive values are down).

Return Value The return value is the handle of the link if the function is successful. Otherwise, it
is whNull.

Comments If a zero (0) is returned, expression is NULL, too long or invalid.

6-36 Chapter 6

 PctFillLnk_New
WHMEM

PctFillLnk_New(HCHUNK hChunk,
WHMEM whObj,
WORD linkType,
WORD directionType,
LPSTR expression,
REAL minValue,
REAL maxValue,
int minPercent,
int maxPercent,
LONG fillColor)

Description Creates a horizontal or vertical percent fill link for the object specified.
Parameter Description

hChunk Handle to the memory section containing the object
for which the link is being created.

whObj Handle to the object for which the link is being
created.

linkType Specifies the flags that determine the link type. This
parameter can be one of the following values:

Value Meaning

VERT_LINK Specifies a vertical
link.

HORIZ_LINK Specifies a
horizontal link.

directionType Specifies the flags
that determine the
direction type for
the fill's origin. This
parameter can be
one of the following
values:

LINK_LEFT Specifies that the
object will be filled
from the object's left
side. This value is
valid for a
HORIZ_LINK.

LINK_MIDDLE Specifies that the
object will be filled
from the object's
horizontal midpoint.
This value is valid
for a HORIZ_LINK.

Wizard API Function Reference 6-37

Value Meaning

LINK_RIGHT Specifies that the
object will be filled
from the object's
right side. This
value is valid for a
HORIZ_LINK.

LINK_TOP Specifies that the
object will be filled
from the object's
top. This value is
valid for a
VERT_LINK.

LINK_CENTER Specifies that the
object will be filled
from the object's
vertical midpoint.
This value is valid
for a VERT_LINK.

LINK_BOTTOM Specifies that the
object will be filled
from the object's
bottom. This value
is valid for a
VERT_LINK.

expression Points to a null-terminated string containing the
analog expression or tagname to use for the link.

minValue Specifies the value when the fill reaches its smallest
amount.

maxValue Specifies the value when the fill reaches its largest
amount.

minPercent Specifies the percentage, from 0 to 100, of the
object's defined width (HORIZ_LINK) or height
(VERT_LINK) that the object will filled when the
expression is at the minValue.

maxPercent Specifies the percentage, from 0 to 100, of the
object's defined width (HORIZ_LINK) or height
(VERT_LINK) that the object will filled when the
expression is at the maxValue.

fillColor Specifies the fill color. Colors are specified in
Windows standard RGB format.

Return Value The return value is the handle of the link if the function is successful. Otherwise, it
is whNull.

Comments If a zero (0) is returned, expression is NULL, too long or invalid or, linkType,
directionType are invalid.

6-38 Chapter 6

 Point_Scale
VOID

Point_Scale(LPPOINT dest,
LPRECT old,
LPRECT new,
int flags)

Description Linearly scales the point supplied using the old and new rectangles specified.
Parameter Description

dest Points to a POINT structure that defines the original
point that was based upon the original rectangle.
The scaled point will be returned in this parameter.

old Points to a RECT structure that defines the original
rectangle.

new Points to a RECT structure that defines the new
rectangle.

flags Specifies the flags that determine the scaling mode.
This parameter can be a combination of the
following values:

Value Meaning

0 SCALE_X1 |
SCALE_Y1.
Specifies scaling of
all coordinates. The
coordinates are
absolute.

SCALE_X1 Specifies linear
scaling of the x-
coordinate.

LOFFSET_X1 Specifies the x-
coordinate should
retain the same
offset from the left
edge of the
rectangle.

ROFFSET_X1 Specifies the x-
coordinate should
retain the same
offset from the right
edge of the
rectangle.

OFFSET_X1 The same as
LOFFSET_X1.

Wizard API Function Reference 6-39

Value Meaning

SCALE_Y1 Specifies linear
scaling of the y-
coordinate.

TOFFSET_Y1 Specifies the y-
coordinate should
retain the same
offset from the top
edge of the
rectangle.

BOFFSET_Y1 Specifies the y-
coordinate should
retain the same
offset from the
bottom edge of the
rectangle.

OFFSET_Y1 The same as
LOFFSET_Y1.

SCALE_REL Specifies that the
coordinates are
relative to the origin
of the rectangle. If
this flag is not set
then the coordinates
are assumed to be
absolute.

Return Value None.

Comments If the scaling mode SCALE_REL is set then the coordinates will be unaffected
when SCALE_X1, or SCALE_Y1 are used. The _X1 flags cannot be combined.
Likewise for the _Y1 flags.

6-40 Chapter 6

 PointArray_Scale
VOID

PointArray_Scale(int nPts,
LPPOINT dest,
LPRECT old,
LPRECT new,
int flags)

Description Linearly scales the array of points supplied using the old and new rectangles
specified.
Parameter Description

nPts Specifies the number of points in the array.

dest Points to an array of POINT structures. Each
structure in the array specifies a point that defines
an original point that was based upon the original
rectangle. Each point in the array will be scaled and
returned in this parameter.

old Points to a RECT structure that defines the original
rectangle.

new Points to a RECT structure that defines the new
rectangle.

flags Specifies the flags that determine the scaling mode.
This parameter can be a combination of the
following values:

Value Meaning

0 SCALE_X1 |
SCALE_Y1.
Specifies scaling of
all coordinates. The
coordinates are
absolute.

SCALE_X1 Specifies linear
scaling of the x-
coordinate.

LOFFSET_X1 Specifies the x-
coordinate should
retain the same
offset from the left
edge of the
rectangle.

ROFFSET_X1 Specifies the x-
coordinate should
retain the same
offset from the right
edge of the
rectangle.

Wizard API Function Reference 6-41

Value Meaning

OFFSET_X1 The same as
LOFFSET_X1.

SCALE_Y1 Specifies linear
scaling of the y-
coordinate.

TOFFSET_Y1 Specifies the y-
coordinate should
retain the same
offset from the top
edge of the
rectangle.

BOFFSET_Y1 Specifies the y-
coordinate should
retain the same
offset from the
bottom edge of the
rectangle.

OFFSET_Y1 The same as
LOFFSET_Y1.

SCALE_REL Specifies that the
coordinates are
relative to the origin
of the rectangle. If
this flag is not set
then the coordinates
are assumed to be
absolute.

Return Value None.

Comments If the scaling mode SCALE_REL is set then the coordinates will be unaffected
when SCALE_X1, or SCALE_Y1 are used. The _X1 flags cannot be combined.
Likewise for the _Y1 flags.

6-42 Chapter 6

 PointReal_Scale
VOID

PointReal_Scale(LPPOINTREAL dest,
LPRECT old,
LPRECT new,
int flags)

Description Linearly scales the point, with REAL coordinates, using the old and new rectangles
specified.
Parameter Description

dest Points to a POINTREAL structure that defines the
original point that was based upon the original
rectangle. The scaled point will be returned.

old Points to a RECT structure that defines the original
rectangle.

new Points to a RECT structure that defines the new
rectangle.

flags Specifies the flags that determine the scaling mode.
Can be a combination of the following values:

Value Meaning

0 SCALE_X1 |
SCALE_Y1.
Specifies scaling of
all coordinates. The
coordinates are
absolute.

SCALE_X1 Specifies linear
scaling of the x-
coordinate.

LOFFSET_X1 Specifies the x-
coordinate should
retain the same
offset from the left
edge of the
rectangle.

ROFFSET_X1 Specifies the x-
coordinate should
retain the same
offset from the right
edge of the
rectangle.

Wizard API Function Reference 6-43

Value Meaning

OFFSET_X1 The same as
LOFFSET_X1.

SCALE_Y1 Specifies linear
scaling of the y-
coordinate.

TOFFSET_Y1 Specifies the y-
coordinate should
retain the same
offset from the top
edge of the
rectangle.

BOFFSET_Y1 Specifies the y-
coordinate should
retain the same
offset from the
bottom edge of the
rectangle.

OFFSET_Y1 The same as
LOFFSET_Y1.

SCALE_REL Specifies that the
coordinates are
relative to the origin
of the rectangle. If
this flag is not set
then the coordinates
are assumed to be
absolute.

Return Value None.

Comments If the scaling mode SCALE_REL is set then the coordinates will be unaffected
when SCALE_X1, or SCALE_Y1 are used. The _X1 flags cannot be combined.
Likewise for the _Y1 flags.

6-44 Chapter 6

 PointRealArray_Scale
VOID

PointRealArray_Scale(int nPts,
LPPOINTREAL dest,
LPRECT old,
LPRECT new,
int flags)

Description Linearly scales the array of points, with REAL coordinates, using the old and new
rectangles specified.
Parameter Description

nPts Specifies the number of points in the array.

dest Points to an array of POINTREAL structures. Each
structure in the array specifies a point that defines
an original point that was based upon the original
rectangle. Each point in the array will be scaled and
returned in this parameter.

old Points to a RECT structure that defines the original
rectangle.

new Points to a RECT structure that defines the new
rectangle.

flags Specifies the flags that determine the scaling mode.
This parameter can be a combination of the
following values:

Value Meaning

0 SCALE_X1 |
SCALE_Y1.
Specifies scaling of
all coordinates. The
coordinates are
absolute.

SCALE_X1 Specifies linear
scaling of the x-
coordinate.

LOFFSET_X1 Specifies the x-
coordinate should
retain the same
offset from the left
edge of the
rectangle.

ROFFSET_X1 Specifies the x-
coordinate should
retain the same
offset from the right
edge of the
rectangle.

Wizard API Function Reference 6-45

Value Meaning

OFFSET_X1 The same as
LOFFSET_X1.

SCALE_Y1 Specifies linear
scaling of the y-
coordinate.

TOFFSET_Y1 Specifies the y-
coordinate should
retain the same
offset from the top
edge of the
rectangle.

BOFFSET_Y1 Specifies the y-
coordinate should
retain the same
offset from the
bottom edge of the
rectangle.

OFFSET_Y1 The same as
LOFFSET_Y1.

SCALE_REL Specifies that the
coordinates are
relative to the origin
of the rectangle. If
this flag is not set
then the coordinates
are assumed to be
absolute.

Return Value None.

Comments If the scaling mode SCALE_REL is set then the coordinates will be unaffected
when SCALE_X1, or SCALE_Y1 are used. The _X1 flags cannot be combined.
Likewise for the _Y1 flags.

6-46 Chapter 6

 PolygonObj_New
WHMEM

PolygonObj_New(HCHUNK hChunk,
WHMEM whParent,
int nPts,
LPPOINT lpPoints)

Description Creates a polygon object at the specified location in the current application window.
Parameter Description

hChunk Handle to the memory section containing the object.

whParent Handle to the parent object (symbol, group, or
wizard) that will contain this object. 0 indicates
there is no parent object.

nPts Specifies the number of points in the array. This
value must be at least 2.

lpPoints Points to an array of POINT structures. Each
structure in the array specifies a point.

Return Value The return value is the handle of the object if the function is successful. Otherwise,
it is whNull.

Comments None.

 PolylineObj_New
WHMEM

PolylineObj_New(HCHUNK hChunk,
WHMEM whParent,
int nPts,
LPPOINT lpPoints)

Description Creates a polyline object at the specified location in the current application window.
Parameter Description

hChunk Handle to the memory section containing the object.

whParent Handle to the parent object (symbol, group, or
wizard) that will contain this object. 0 indicates
there is no parent object.

nPts Specifies the number of points in the array. This
value must be at least 2.

lpPoints Points to an array of POINT structures. Each
structure in the array specifies a point.

Return Value The return value is the handle of the object if the function is successful. Otherwise,
it is whNull.

Comments None.

Wizard API Function Reference 6-47

 RealTrendObj_New
WHMEM

RealTrendObj_New(HCHUNK hChunk,
WHMEM whParent,
int left,
int top,
int right,
int bottom,
LPSTR comment,
LONG chartColor,
LONG borderColor,
WORD sampleUnits,
DWORD sampleTime,
DWORD samples,
WORD options)

Description Creates a real time trend object at the specified location in the current application
window.
Parameter Description

hChunk Handle to the memory section containing the object.

whParent Handle to the parent object (symbol, group, or
wizard) that will contain this object. 0 indicates
there is no parent object.

left Specifies the x-coordinate of the upper-left corner.

top Specifies the y-coordinate of the upper-left corner.

right Specifies the x-coordinate of the lower-right corner.

bottom Specifies the y-coordinate of the lower-right corner.

comment Points to a null-terminated string containing a
comment for the real time trend object.

chartColor Specifies the color of the chart's background. Colors
are specified in Windows standard RGB format.

borderColor Specifies the color of the chart's border. Colors are
specified in Windows standard RGB format.

sampleUnits Specifies the flags that determine the measurement
units for the sampleTime parameter. This parameter
can be one of the following values:

Value Meaning

TIME_MSEC Specifies units as
milliseconds.

TIME_SEC Specifies units as
seconds.

6-48 Chapter 6

Value Meaning

TIME_MIN Specifies units as
minutes.

TIME_HR Specifies units as
hours.

sampleTime Specifies the time between samples in units
specified by the sampleUnits parameter. This
parameter can be a value from 1 to 999.

samples Specifies the number of samples displayed in the
chart. This value must be at least 2 and no greater
than 1024.

options Specifies the flags that determine the trend options.
This parameter can be a combination of the
following values:

Value Meaning

TREND_MEM_UPDATE Specifies trend
updates only when
the trend is in
memory.

Return Value The return value is the handle of the object if the function is successful. Otherwise,
it is whNull.

Comments If a zero (0) is returned, invalid sampleUnits (less than 2 or greater than 1024).

Defaults are used for labels, colors and pens.

Wizard API Function Reference 6-49

 Rect_Scale
VOID

Rect_Scale(LPRECT dest,
LPRECT old,
LPRECT new,
int flags)

Description Linearly scales the rectangle supplied using the old and new rectangles specified.
Parameter Description

dest Points to a RECT structure that defines the original
rectangle that was based upon the original rectangle.
The scaled rectangle will be returned in this
parameter.

old Points to a RECT structure that defines the original
rectangle.

new Points to a RECT structure that defines the new
rectangle.

flags Specifies the flags that determine the scaling mode.
This parameter can be a combination of the
following values:

Value Meaning

0 SCALE_X1 |
SCALE_X2 |
SCALE_Y1 |
SCALE_Y2.
Specifies scaling of
all coordinates. The
coordinates are
absolute.

SCALE_X1 Specifies linear
scaling of the x-
coordinate of the
top-left corner.

LOFFSET_X1 Specifies the x-
coordinate of the
top-left corner
should retain the
same offset from the
left edge of the
rectangle.

ROFFSET_X1 Specifies the x-
coordinate of the
top-left corner
should retain the
same offset from the
right edge of the
rectangle.

6-50 Chapter 6

Value Meaning

OFFSET_X1 The same as
LOFFSET_X1.

SCALE_X2 Specifies linear
scaling of the x-
coordinate of the
lower-right corner.

LOFFSET_X2 Specifies the x-
coordinate of the
lower-right corner
should retain the
same offset from the
left edge of the
rectangle.

ROFFSET_X2 Specifies the x-
coordinate of the
lower-right corner
should retain the
same offset from the
right edge of the
rectangle.

OFFSET_X2 The same as
ROFFSET_X2.

SCALE_Y1 Specifies linear
scaling of the y-
coordinate of the
top-left corner.

TOFFSET_Y1 Specifies the y-
coordinate of the
top-left corner
should retain the
same offset from the
top edge of the
rectangle.

BOFFSET_Y1 Specifies the y-
coordinate of the
top-left corner
should retain the
same offset from the
bottom edge of the
rectangle.

Wizard API Function Reference 6-51

Value Meaning

OFFSET_Y1 The same as
LOFFSET_Y1.

SCALE_Y2 Specifies linear
scaling of the y-
coordinate of the
lower-right corner.

TOFFSET_Y2 Specifies the y-
coordinate of the
lower-right corner
should retain the
same offset from the
top edge of the
rectangle.

BOFFSET_Y2 Specifies the y-
coordinate of the
lower-right corner
should retain the
same offset from the
bottom edge of the
rectangle.

OFFSET_Y2 The same as
BOFFSET_Y2.

SCALE_REL Specifies that the
coordinates are
relative to the origin
of the rectangle. If
this flag is not set
then the coordinates
are assumed to be
absolute.

Return Value None.

Comments If the scaling mode SCALE_REL is set then the coordinates will be unaffected
when SCALE_X1, SCALE_X2, SCALE_Y1,or SCALE_Y2 are used. The _X1
flags cannot be combined. Likewise for the _X2, _Y1, and _Y2 flags.

6-52 Chapter 6

 RectangleObj_New
WHMEM

RectangleObj_New(HCHUNK hChunk,
WHMEM whParent,
int left,
int top,
int right,
int bottom)

Description Creates a rectangle object at the specified location in the current application
window.
Parameter Description

hChunk Handle to the memory section containing the object.

whParent Handle to the parent object (symbol, group, or
wizard) that will contain this object. 0 indicates
there is no parent object.

left Specifies the x-coordinate of the upper-left corner.

top Specifies the y-coordinate of the upper-left corner.

right Specifies the x-coordinate of the lower-right corner.

bottom Specifies the y-coordinate of the lower-right corner.

Return Value The return value is the handle of the object if the function is successful. Otherwise,
it is whNull.

Comments None.

Wizard API Function Reference 6-53

 RectReal_Scale
VOID

RectReal_Scale(LPRECTREAL dest,
LPRECT old,
LPRECT new,
int flags)

Description Linearly scales the rectangle, with REAL coordinates, using the old and new
rectangles specified.
Parameter Description

dest Points to a RECTREAL structure that defines the
original rectangle that was based upon the original
rectangle. The scaled rectangle will be returned in
this parameter.

old Points to a RECT structure that defines the original
rectangle.

new Points to a RECT structure that defines the new
rectangle.

flags Specifies the flags that determine the scaling mode.
This parameter can be a combination of the
following values:

Value Meaning

0 SCALE_X1 |
SCALE_X2 |
SCALE_Y1 |
SCALE_Y2.
Specifies scaling of
all coordinates. The
coordinates are
absolute.

SCALE_X1 Specifies linear
scaling of the x-
coordinate of the
top-left corner.

LOFFSET_X1 Specifies the x-
coordinate of the
top-left corner
should retain the
same offset from the
left edge of the
rectangle.

ROFFSET_X1 Specifies the x-
coordinate of the
top-left corner
should retain the
same offset from the
right edge of the
rectangle.

6-54 Chapter 6

Value Meaning

OFFSET_X1 The same as
LOFFSET_X1.

SCALE_X2 Specifies linear
scaling of the x-
coordinate of the
lower-right corner.

LOFFSET_X2 Specifies the x-
coordinate of the
lower-right corner
should retain the
same offset from the
left edge of the
rectangle.

ROFFSET_X2 Specifies the x-
coordinate of the
lower-right corner
should retain the
same offset from the
right edge of the
rectangle.

OFFSET_X2 The same as
ROFFSET_X2.

SCALE_Y1 Specifies linear
scaling of the y-
coordinate of the
top-left corner.

TOFFSET_Y1 Specifies the y-
coordinate of the
top-left corner
should retain the
same offset from the
top edge of the
rectangle.

BOFFSET_Y1 Specifies the y-
coordinate of the
top-left corner
should retain the
same offset from the
bottom edge of the
rectangle.

OFFSET_Y1 The same as
LOFFSET_Y1.

Wizard API Function Reference 6-55

Value Meaning

SCALE_Y2 Specifies linear
scaling of the y-
coordinate of the
lower-right corner.

TOFFSET_Y2 Specifies the y-
coordinate of the
lower-right corner
should retain the
same offset from the
top edge of the
rectangle.

BOFFSET_Y2 Specifies the y-
coordinate of the
lower-right corner
should retain the
same offset from the
bottom edge of the
rectangle.

OFFSET_Y2 The same as
BOFFSET_Y2.

SCALE_REL Specifies that the
coordinates are
relative to the origin
of the rectangle. If
this flag is not set
then the coordinates
are assumed to be
absolute.

Return Value None.

Comments If the scaling mode SCALE_REL is set then the coordinates will be unaffected
when SCALE_X1, SCALE_X2, SCALE_Y1,or SCALE_Y2 are used. The _X1
flags cannot be combined. Likewise for the _X2, _Y1, and _Y2 flags.

6-56 Chapter 6

 RRectangleObj_New
WHMEM

RRectangleObj_New(HCHUNK hChunk,
WHMEM whParent,
int left,
int top,
int right,
int bottom,
int rrWidth,
int rrHeight)

Description Creates a rounded corner rectangle object at the specified location in the current
application window.
Parameter Description

hChunk Handle to the memory section containing the object.

whParent Handle to the parent object (symbol, group, or
wizard) that will contain this object. 0 indicates
there is no parent object.

left Specifies the x-coordinate of the upper-left corner.

top Specifies the y-coordinate of the upper-left corner.

right Specifies the x-coordinate of the lower-right corner.

bottom Specifies the y-coordinate of the lower-right corner.

rrWidth Specifies the width of the ellipse used to draw the
rounded corners.

rrHeight Specifies the height of the ellipse used to draw the
rounded corners.

Return Value The return value is the handle of the object if the function is successful. Otherwise,
it is whNull.

Comments None.

Wizard API Function Reference 6-57

 SizeLnk_New
WHMEM

SizeLnk_New(HCHUNK hChunk,
WHMEM whObj,
WORD linkType,
WORD anchorType,
LPSTR expression,
REAL minValue,
REAL maxValue,
int minPercent,
int maxPercent)

Description Creates a horizontal or vertical size link for the object specified.
Parameter Description

hChunk Handle to the memory section containing the object
for which the link is being created.

whObj Handle to the object for which the link is being
created.

linkType Specifies the flags that determine the link type. This
parameter can be one of the following values:

Value Meaning

VERT_LINK Specifies a vertical
link.

HORIZ_LINK Specifies a
horizontal link.

anchorType Specifies the flags that determine the anchor type.
This parameter can be one of the following values:

Value Meaning

LINK_LEFT Specifies that the
object will be
anchored at the
object's left side.
This value is valid
for a HORIZ_LINK.

LINK_MIDDLE Specifies that the
object will be
anchored at the
object's horizontal
midpoint. This value
is valid for a
HORIZ_LINK.

LINK_RIGHT Specifies that the
object will be
anchored at the
object's right side.
This value is valid
for a HORIZ_LINK.

6-58 Chapter 6

Value Meaning

LINK_TOP Specifies that the
object will be
anchored at the
object's top. This
value is valid for a
VERT_LINK.

LINK_CENTER Specifies that the
object will be
anchored at the
object's vertical
midpoint. This value
is valid for a
VERT_LINK.

LINK_BOTTOM Specifies that the
object will be
anchored at the
object's bottom. This
value is valid for a
VERT_LINK.

expression Points to a null-terminated string containing the
analog expression or tagname to use for the link.

minValue Specifies the value when the object is its smallest
size.

maxValue Specifies the value when the object is its largest
size.

minPercent Specifies the percentage, from 0 to 100, of the
object's defined width (HORIZ_LINK) or height
(VERT_LINK) that the object will be when the
expression is at the minValue.

maxPercent Specifies the percentage, from 0 to 100, of the
object's defined width (HORIZ_LINK) or height
(VERT_LINK) that the object will be when the
expression is at the maxValue.

Return Value The return value is the handle of the link if the function is successful. Otherwise, it
is whNull.

Comments If a zero (0) is returned, expression is NULL, too long or invalid linkType, invalid
anchorType.

Wizard API Function Reference 6-59

 SliderLnk_New
WHMEM

SliderLnk_New(HCHUNK hChunk,
WHMEM whObj,
WORD linkType,
WORD referenceType,
LPSTR tagname,
REAL minValue,
REAL maxValue,
int minPosition,
int maxPosition)

Description Creates a horizontal or vertical slider touch link for the object specified.
Parameter Description

hChunk Handle to the memory section containing the object
for which the link is being created.

whObj Handle to the object for which the link is being
created.

linkType Specifies the flags that determine the link type. This
parameter can be one of the following values:

Value Meaning

VERT_LINK Specifies a vertical
link.

HORIZ_LINK Specifies a
horizontal link.

referenceType Specifies the flags that determine the reference type.
This parameter can be one of the following values:

Value Meaning

LINK_LEFT Specifies that the
object will be
moved using the
object's left side as
its origin. This value
is valid for a
HORIZ_LINK.

LINK_MIDDLE Specifies that the
object will be
moved using the
object's horizontal
midpoint as its
origin. This value is
valid for a
HORIZ_LINK.

6-60 Chapter 6

Value Meaning

LINK_RIGHT Specifies that the
object will be
moved using the
object's right side as
its origin. This value
is valid for a
HORIZ_LINK.

LINK_TOP Specifies that the
object will be
moved using the
object's top as its
origin. This value is
valid for a
VERT_LINK.

LINK_CENTER Specifies that the
object will be
moved using the
object's vertical
midpoint as its
origin. This value is
valid for a
VERT_LINK.

LINK_BOTTOM Specifies that the
object will be
moved using the
object's bottom as its
origin. This value is
valid for a
VERT_LINK.

tagname Points to a null-terminated string containing the
analog tagname to use for the link.

minValue Specifies the value when the object is at its highest
(VERT_LINK) or leftmost (HORIZ_LINK)
position.

maxValue Specifies the value when the object is at its lowest
(VERT_LINK) or rightmost (HORIZ_LINK)
position.

minPosition Specifies the number of pixels the object will move
up (VERT_LINK) or left (HORIZ_LINK) from its
current position in relation to the values specified
for the minValue and maxValue parameters.

maxPosition Specifies the number of pixels the object will move
down (VERT_LINK) or right (HORIZ_LINK) from
its current position in relation to the values specified
for the minValue and maxValue parameters.

Return Value The return value is the handle of the link if the function is successful. Otherwise, it
is whNull.

Comments If a zero (0) is returned, tagname is NULL, too long or invalid linkType or invalid
referenceType.

Wizard API Function Reference 6-61

 Stmt_New
EXPR

Stmt_New(HCHUNK hChunk,
LPSTR pStmtStr,
int len,
LPINT errorCol)

Description Creates and validates a block of statements and returns a handle to the validated
statement.
Parameter Description

hChunk Handle to the memory section containing the object
for which the statement is being created.

pStmtStr Points to a null-terminated string containing a block
of statements. Each statement must be separated by
a CR-LF pair ("\r\n").

len Specifies the number of bytes in the string.

errorCol Points to an integer variable that indicates the
character position where a syntax error occurred in
the block of statements. This parameter is returned
when there is an error, as indicated when the return
value is whNull.

Return Value The return value is the handle of the statement block if the function is successful.
Otherwise, it is whNull.

Comments None.

6-62 Chapter 6

 StmtTouchLnk_New
WHMEM

StmtTouchLnk_New(HCHUNK hChunk,
WHMEM whObj,
EXPR stmtDown,
EXPR stmtUp,
EXPR stmtWhile,
DWORD dwWhileFreq,
BYTE cKeyFlags,
WORD wVirtKey)

Description Creates an action touch link for the object specified. Statements can be associated
with the up, down, and while down conditions for the object.
Parameter Description

hChunk Handle to the memory section containing the object
for which the link is being created.

whObj Handle to the object for which the link is being
created.

stmtDown Handle to the block of statements that execute when
the touch link button for the object is initially
pressed. This parameter should be whNull if no
statements are desired.

stmtUp Handle to the block of statements that execute when
the touch link button for the object is released. This
parameter should be whNull if no statements are
desired.

stmtWhile Handle to the block of statements that execute while
the touch link button for the object is held down.
This parameter should be whNull if no statements
are desired.

dwWhileFreq Specifies the frequency (in milliseconds) that the
stmtWhile block of statements will execute.

cKeyFlags Specifies the flags used when a keyboard key is
assigned to this link. This parameter can be a
combination of the following values:

Value Meaning

TOUCH_KS_SHIFT Specifies the SHIFT
key must be held
down in addition to
the key specified.

TOUCH_KS_CTRL Specifies the CTRL
key must be held
down in addition to
the key specified.

0 Specifies that only
the specified key
must be held down.

Wizard API Function Reference 6-63

Parameter Description

wVirtKey Specifies the keyboard key equivalent assigned to
this link. This value is 0 if there is no keyboard
equivalent.

Return Value The return value is the handle of the link if the function is successful. Otherwise, it
is whNull.

Comments None.

 StrInputLnk_New
WHMEM

StrInputLnk_New(HCHUNK hChunk,
WHMEM whObj,
LPSTR tagname,
LPSTR userMsg,
BOOL bUseKeypad,
BOOL bEchoChars,
BOOL bInputOnly,
BYTE cKeyFlags,
WORD wVirtKey)

Description Creates a string (message) input link for the object specified.
Parameter Description

hChunk Handle to the memory section containing the object
for which the link is being created.

whObj Handle to the object for which the link is being
created.

tagname Points to a null-terminated string containing the
string tagname to use for the link.

userMsg Points to a null-terminated string containing the
message or instruction to display if the bUseKeypad
option is enabled.

bUseKeypad Specifies the use of an on-screen keypad for
entering new values if this value is non-zero.

bEchoChars Specifies if the characters being input will be
displayed as they are input. A value of FALSE will
prevent sensitive data, such as a password, from
being displayed on the screen.

bInputOnly Specifies this link as input only, the value entered
will not be displayed, if this value is non-zero. This
setting only applies to objects that have text display
associated with them (for example, a push button).

6-64 Chapter 6

Parameter Description

cKeyFlags Specifies the flags used when a keyboard key is
assigned to this link. This parameter can be a
combination of the following values:

Value Meaning

TOUCH_KS_SHIFT Specifies the SHIFT
key must be held
down in addition to
the key specified.

TOUCH_KS_CTRL Specifies the CTRL
key must be held
down in addition to
the key specified.

0 Specifies that only
the specified key
must be held down.

wVirtKey Specifies the keyboard key equivalent assigned to
this link. This value is 0 if there is no keyboard
equivalent.

Return Value The return value is the handle of the link if the function is successful. Otherwise, it
is whNull.

Comments If a zero (0) is returned, tagname is NULL, too long or invalid or, userMsg is
NULL or too long.

 StrOutputLnk_New
WHMEM

StrOutputLnk_New(HCHUNK hChunk,
WHMEM whObj,
LPSTR expression)

Description Creates a string (message) output link for the object specified.
Parameter Description

hChunk Handle to the memory section containing the object
for which the link is being created.

whObj Handle to the object for which the link is being
created.

expression Points to a null-terminated string containing the
string expression or tagname to use for the link.

Return Value The return value is the handle of the link if the function is successful. Otherwise, it
is whNull.

Comments If a zero (0) is returned, expression is NULL, too long or invalid.

Wizard API Function Reference 6-65

 StrTag_SetInfo
int

StrTag_SetInfo(DBHND dbHnd,
LP_STRTAGINFO lpStrInfo)

Description Sets the string information for a database tagname with the given handle.
Parameter Description

dbHnd Handle to the database tagname.

lpStrInfo Pointer to the string information structure.

Return Value Error code.

Comments None.

 SymbolObj_New
WHMEM

SymbolObj_New(HCHUNK hChunk,
WHMEM whParent,
int left,
int top,
int right,
int bottom)

Description Creates a symbol object at the specified location in the current application window.
Populate the symbol with other objects by using this object's handle as the parent
handle.
Parameter Description

hChunk Handle to the memory section containing the object.

whParent Handle to the parent object (symbol, group, or
wizard) that will contain this object. 0 indicates
there is no parent object.

left Specifies the x-coordinate of the upper-left corner.

top Specifies the y-coordinate of the upper-left corner.

right Specifies the x-coordinate of the lower-right corner.

bottom Specifies the y-coordinate of the lower-right corner.

Return Value The return value is the handle of the object if the function is successful. Otherwise,
it is whNull.

Comments None.

6-66 Chapter 6

 Tag_Find
DBHND

Tag_Find(LPSTR tagname)

Description Returns the handle of the database tagname with the given name.
Parameter Description

tagname Points to a null-terminated string containing the
database tagname.

Return Value Handle to the tagname found. Otherwise, it is 0.

Comments None.

 Tag_FindApplTopicItem
DBHND

Tag_FindApplTopicItem(LPSTR application,
LPSTR topic,
LPSTR item)

Description Returns the handle of the database tagname with the given I/O application, topic and
item.
Parameter Description

application Points to a null-terminated string containing the
application name (for example, "EXCEL"). The
application can also include the node name (for
example, "\\NODE\EXCEL").

topic Points to a null-terminated string containing the I/O
topic (for example, "SHEET1.XLS").

item Points to a null-terminated string containing the I/O
item (for example, "R1C1").

Return Value Handle to the tagname found.

Comments If the tagname is not found, 0 is returned.

Wizard API Function Reference 6-67

 Tag_GetAccessInfo
int

Tag_GetAccessInfo(DBHND dbHnd,
LP_TAGACCESSINFO lpAccessInfo)

Description Returns the access information for the database tagname with the given handle.
Parameter Description

dbHnd Handle to the database tagname.

lpAccessInfo Pointer to the access information structure.

Return Value Error code.

Comments None.

 Tag_GetGroup
DBHND

Tag_GetGroup(DBHND dbHnd)

Description Returns the group handle for the database tagname with the given handle.
Parameter Description

dbHnd Handle to the database tagname.

Return Value Handle to the group handle for the database tagname. A value of 0 indicates that the
database tagname belongs to the system group.

Comments If dbHnd is NULL, a zero (0) is returned.

 Tag_GetInfo
int

Tag_GetInfo(DBHND dbHnd,
LP_TAGINFO lpTagInfo)

Description Returns the general information for the database tagname with the given handle.
Parameter Description

lpTagInfo Points to a TAGINFO structure that returns general
information for the database tagname.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments None.

6-68 Chapter 6

 Tag_GetRetentiveInfo
int

Tag_GetRetentiveInfo(DBHND dbHnd,
LP_TAGRETENTIVEINFO lpRetentiveInfo)

Description Returns the retentive information for a database tagname with the given handle.
Parameter Description

dbHnd Handle to the database tagname.

lpRetentiveInfo Pointer to the retentive information structure.

Return Value Error code.

Comments None.

 Tag_GetUniqueName
int

Tag_GetUniqueName(LPSTR basename,
LPSTR tagname)

Description Returns a unique tagname derived from the basename supplied.
Parameter Description

basename Points to a null-terminated string containing the
basename for the database tagname. If the basename
is not unique, a unique name is generated by
indexing the basename.

tagname Points to a null-terminated string returning the
unique database tagname.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments The area of memory specified by tagname must be large enough to store a full
tagname (NL_TAGNAME).

 Tag_GetValueAlarm
int

Tag_GetValueAlarm(DBHND dbHnd,
LP_VALALARMINFO lpValAlarm)

Description Returns the value alarm information for a database tagname with the given handle.
Parameter Description

dbHnd Handle to the database tagname.

lpValAlarm Pointer to the value alarm tagname information
structure.

Return Value Error code.

Comments None.

Wizard API Function Reference 6-69

 Tag_New
DBHND

Tag_New(LPSTR tagname,
WORD tagType,
WORD accessType,
LPSTR comment,
LP_TAGACCESSINFO lpAccessInfo)

Description Creates a database tagname with the specified name, type, and comment.
Parameter Description

tagname Points to a null-terminated string containing the
database tagname.

tagType Specifies the flags that determine the tagname type.
This parameter can be one of the following values:

Value Meaning

TYPE_DISCRETE Specifies a discrete
tagname.

TYPE_INTEGER Specifies an integer
tagname.

TYPE_REAL Specifies a floating
point tagname.

TYPE_STRING Specifies a string
(message) tagname.

TYPE_ANALOG Specifies an analog
tagname. This is the
same as
TYPE_REAL.

TYPE_ALMGRP Specifies an indirect
alarm group
reference. The
accessType
parameter is not
used for this type.

TYPE_HIST Specifies a historical
trend tagname. The
accessType
parameter is not
used for this type.

TYPE_TAGID Specifies a tagname
ID type. The
accessType
parameter is not
used for this type.

6-70 Chapter 6

Parameter Description

accessType Specifies the flags that determine the access mode
for the tagname. This parameter can be one of the
following values:

Value Meaning

ACCESS_MEM Specifies a memory
access tagname.

ACCESS_DDE Specifies an I/O
access tagname.

ACCESS_IND Specifies an indirect
access tagname.

comment Points to a null-terminated string containing the
comment for the database tagname.

lpAccessInfo Points to an TAGACCESSINFO structure that
contains the I/O access information if the access
type ACCESS_DDE is requested. This parameter
should be NULL for all other access types.

Return Value The return value is the handle of the database tagname if the function is successful.
Otherwise, it is 0.

Comments This function will fail if the database tagname already exists or if tagType or
accessType are invalid.

 Tag_SetAccessInfo
int

Tag_SetAccessInfo(DBHND dbHnd,
LP_TAGACCESSINFO lpAccessInfo)

Description Sets the access information for the database tagname with the given handle.
Parameter Description

dbHnd Handle to the database tagname.

lpAccessInfo Pointer to the access information structure.

Return Value Error code.

Comments None.

Wizard API Function Reference 6-71

 Tag_SetDeviationAlarm
int

Tag_SetDeviationAlarm(DBHND dbHnd,
LP_DEVALARMINFO lpDevAlarm)

Description Sets the deviation alarm information for a database tagname with the given handle.
Parameter Description

dbHnd Handle to the database tagname.

lpDevAlarm Pointer to the deviation alarm information structure.

Return Value Error code.

Comments None.

 Tag_SetDiscAlarm
int

Tag_SetDiscAlarm(DBHND dbHnd,
LP_DISCALARMINFO lpDiscAlarm)

Description Sets the discrete alarm information for a database tagname with the given handle.
Parameter Description

dbHnd Handle to the database tagname.

lpDiscAlarm Pointer to the discrete alarm information structure.

Return Value Error code.

Comments None.

 Tag_SetEventInfo
int

Tag_SetEventInfo(DBHND dbHnd,
LP_TAGEVENTINFO lpEventInfo)

Description Sets the event information for the database tagname with the given handle.
Parameter Description

dbHnd Handle to the database tagname.

lpEventInfo Pointer to the event information structure.

Return Value Error code.

Comments None.

6-72 Chapter 6

 Tag_SetGroup
int

Tag_SetGroup(DBHND dbHnd,
DBHND dbGroup)

Description Sets the group handle for the database tagname with the given handle.
Parameter Description

dbHnd Handle to the database tagname.

dbGroup Handle to the group to set for the database tagname.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments None.

 Tag_SetInfo
int

Tag_SetInfo(DBHND dbHnd,
LP_TAGINFO lpTagInfo)

Description Sets the information specified in the lpTagInfo structure into the tagname specified
by dbHnd.
Parameter Description

dbHnd Handle to the tagname.

lpTagInfo Pointer to the TAGINFO structure.

Return Value Error code, 0 if successful.

Comments None.

 Tag_SetRateOfChangeAlarm
int

Tag_SetRateOfChangeAlarm(DBHND dbHnd,
LP_ROCALARMINFO lpRocAlarm)

Description Sets the rate of change alarm information for a database tagname with the given
handle.
Parameter Description

dbHnd Handle to the database tagname.

lpRocAlarm Pointer to the rate of change alarm information
structure.

Return Value Error code.

Comments None.

Wizard API Function Reference 6-73

 Tag_SetRetentiveInfo
int

Tag_SetRetentiveInfo(DBHND dbHnd,
LP_TAGRETENTIVEINFO lpRetentiveInfo)

Description Sets the retentive information for a database tagname with the given handle.
Parameter Description

dbHnd Handle to the database tagname.

lpRetentiveInfo Pointer to the retentive information structure.

Return Value Error code.

Comments None.

 Tag_SetScalingInfo
int

Tag_SetScalingInfo(DBHND dbHnd,
LP_TAGSCALEINFO lpScaleInfo)

Description Sets the scaling information for a database tagname with the given handle.
Parameter Description

dbHnd Handle to the database tagname.

lpScaleInfo Pointer to the scaling information structure.

Return Value Error code.

Comments None.

 Tag_SetValueAlarm
int

Tag_SetValueAlarm(DBHND dbHnd,
LP_VALALARMINFO lpValAlarm)

Description Sets the value alarm information for a database tagname with the given handle.
Parameter Description

dbHnd Handle to the database tagname.

lpValAlarm Pointer to the value alarm information structure.

Return Value Error code.

Comments None.

6-74 Chapter 6

 Text_GetExtent
VOID

Text_GetExtent(LPLOGFONT lFnt,
LPINT width
LPINT height
int len,
LPSTR text)

Description Returns the width and height of the text in pixels, based upon the logical font
specified. This function should be used instead of the Windows GetTextExtent
function when calculating the metrics of text to be used in InTouch objects.
Parameter Description

lFnt Logical font structure.

width Returned width value of text in pixels.

height Returned height value of text in pixels.

len Length of string.

text Text string for which extent is being requested.

Return Value None.

Comments None.

Wizard API Function Reference 6-75

 TextObj_New
WHMEM

TextObj_New(HCHUNK hChunk,
WHMEM whParent,
int left,
int top,
int right,
int bottom,
LPSTR text,
WORD options)

Description Creates a text object at the specified location in the current application window.
Parameter Description

hChunk Handle to the memory section containing the object.

whParent Handle to the parent object (symbol, group, or
wizard) that will contain this object. 0 indicates
there is no parent object.

left Specifies the x-coordinate of the upper-left corner.

top Specifies the y-coordinate of the upper-left corner.

right Specifies the x-coordinate of the lower-right corner.

bottom Specifies the y-coordinate of the lower-right corner.

text Points to a null-terminated string containing the text
to display.

options Specifies the flags that determine how to draw the
text. This parameter can be one of the following
values:

Value Meaning

TEXT_CENTER Centers text
horizontally.

TEXT_LEFT Left-aligns text.

TEXT_RIGHT Right-aligns text.

Return Value The return value is the handle of the object if the function is successful. Otherwise,
it is whNull.

Comments None.

6-76 Chapter 6

 TrendObj_SetItem
BOOL

TrendObj_SetItem(HCHUNK hChunk,
WHMEM whObj,
int index,
LPSTR expression,
LONG penColor,
int penWidth)

Description Configures an item within the specified historical or real time trend object. Each
item corresponds to a pen in the trend.
Parameter Description

hChunk Handle to the memory section containing the real
time or historical trend object.

whObj Handle to the real time or historical trend object.

index Specifies the pen being modified. This value must
be at least 1 and no greater than the allowed number
of pens for the trend object.

expression Points to a null-terminated string containing the
analog expression or tagname to use for the pen.

penColor Specifies the pen color. Colors are specified in
Windows standard RGB format.

penWidth Specifies the pen width.

Return Value The return value is TRUE if the function is successful. Otherwise, it is FALSE.

Comments A zero (0) is returned, if whObj is invalid or if length of expression is greater than
MAX_EXPR_STRLEN.

Wizard API Function Reference 6-77

 TrendObj_SetTimeInfo
BOOL

TrendObj_SetTimeInfo(HCHUNK hChunk,
WHMEM whObj,
int nMajorDiv,
LONG majorDivColor,
int nMinorDiv,
LONG minorDivColor,
int nLabelDiv,
LONG labelDivColor,
WORD options,
LPSTR timeFormat)

Description Configures time axis settings for the specified historical or real time trend object.
Parameter Description

hChunk Handle to the memory section containing the real
time or historical trend object.

whObj Handle to the real time or historical trend object.

nMajorDiv Specifies the number of major division lines. This
value must be an even multiple of the number of the
'nLabelDiv' parameter.

majorDivColor Specifies the major division line color. Colors are
specified in Windows standard RGB format.

nMinorDiv Specifies the number of minor division lines
between major division lines.

minorDivColor Specifies the minor division line color. Colors are
specified in Windows standard RGB format.

nLabelDiv Specifies the number of major divisions per time
label.

labelDivColor Specifies the label text color. Colors are specified in
Windows standard RGB format.

options Specifies the flags that determine the time axis
options for the trend object. This parameter can be a
combination of the following values:

Value Meaning

TREND_BOTTOM_LABELS Specifies time labels
at the bottom.

TREND_TOP_LABELS Specifies time labels
at the top.

timeFormat Points to a null-terminated string containing the
format specification for the time labels.

Return Value The return value is TRUE if the function is successful. Otherwise, it is FALSE.

Comments A zero (0) is returned, if nMajorDiv, nMinorDiv, nLabelDiv is less than 0 or greater
than 9999 or whObj is invalid.

6-78 Chapter 6

 TrendObj_SetValueInfo
BOOL

TrendObj_SetValueInfo(HCHUNK hChunk,
WHMEM whObj,
int nMajorDiv,
LONG majorDivColor,
int nMinorDiv,
LONG minorDivColor,
int nLabelDiv,
LONG labelDivColor,
WORD options,
REAL minValue,
REAL maxValue)

Description Configures the value axis settings within the specified historical or real time trend
object.
Parameter Description

hChunk Handle to the memory section containing the real
time or historical trend object.

whObj Handle to the real time or historical trend object.

nMajorDiv Specifies the number of major division lines. This
value must be an even multiple of the number of the
'nLabelDiv' parameter.

majorDivColor Specifies the major division line color. Colors are
specified in Windows standard RGB format.

nMinorDiv Specifies the number of minor division lines
between major division lines.

minorDivColor Specifies the minor division line color. Colors are
specified in Windows standard RGB format.

nLabelDiv Specifies the number of major divisions per value
label.

labelDivColor Specifies the label text color. Colors are specified in
Windows standard RGB format.

options Specifies the flags that determine the value axis
options for the trend object. This parameter can be a
combination of the following values:

Value Meaning

TREND_LEFT_LABELS Specifies value
labels at the left.

TREND_RIGHT_LABELS Specifies value
labels at the right.

minValue Specifies the minimum value for the range of values
to be displayed.

Wizard API Function Reference 6-79

Parameter Description

maxValue Specifies the maximum value for the range of values
to be displayed.

Return Value The return value is TRUE if the function is successful. Otherwise, it is FALSE.

Comments A zero (0) is returned, if nMajorDiv, nMinorDiv, nLabelDiv is less than 0 or greater
than 9999 or minValue is greater than maxValue.

 VisibilityLnk_New
WHMEM

VisibilityLnk_New(HCHUNK hChunk,
WHMEM whObj,
LPSTR expression,
BOOL onOff)

Description Creates a visibility link for the object specified.
Parameter Description

hChunk Handle to the memory section containing the object
for which the link is being created.

whObj Handle to the object for which the link is being
created.

expression Points to a null-terminated string containing the
analog expression or tagname to use for the link.

onOff Specifies the desired visibility state. A value of
TRUE will cause the object to be visible when the
expression evaluates to TRUE.

Return Value The return value is the handle of the link if the function is successful. Otherwise, it
is whNull.

Comments A zero (0) is returned if expression is NULL, too long or invalid.

6-80 Chapter 6

 WizardObj_New
WHMEM

WizardObj_New(HCHUNK hChunk,
WHMEM whParent,
int left,
int top,
int right,
int bottom,
LPSTR dllName,
int dllIndex,
WHMEM whData)

Description Creates a wizard object at the specified location in the current application window.
Populate the wizard with other objects by using this object's handle as the parent
handle.
Parameter Description

hChunk Handle to the memory section containing the object.
This parameter should be the value of the hChunk
parameter passed to the Wizard_New function.

whParent Handle to the parent object (symbol, group, or
wizard) that will contain this object. 0 indicates
there is no parent object. This parameter is normally
0.

left Specifies the x-coordinate of the upper-left corner.

top Specifies the y-coordinate of the upper-left corner.

right Specifies the x-coordinate of the lower-right corner.

bottom Specifies the y-coordinate of the lower-right corner.

dllName Points to a null-terminated string containing the
name of the DLL capable of creating the wizard.
This parameter should be the value of the dllName
parameter passed to the Wizard_New function.

dllIndex Specifies the unique identifier for the wizard in the
DLL. This parameter should be the value of the
index parameter passed to the Wizard_New
function.

whData Handle to the data for the wizard being created.
This parameter should be the value of the whData
parameter passed to the Wizard_New function.

Return Value The return value is the handle of the object if the function is successful. Otherwise,
it is whNull.

Comments A zero (0) is returned if length of dllname is greater than 32 characters.

Wizard API Function Reference 6-81

 WizProp_Delete
int

WizProp_Delete(HCHUNK hChunk,
WHMEM whData,
LPSTR name)

Description Deletes the named wizard property.
Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. This is the whData
parameter passed to Wizard_New or the whData
parameter passed to Wizard_Edit.

name Points to a null-terminated string containing the
property name.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments Fails if the property name is not found.

 WizProp_Find
int

WizProp_Find(HCHUNK hChunk,
WHMEM whData,
LPSTR name,
WHMEM FAR *whProperty)

Description Returns a handle to the named wizard property.
Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. This is the whData
parameter passed to Wizard_New or the whData
parameter passed to Wizard_Edit.

name Points to a null-terminated string containing the
property name.

whProperty Points to a handle to the wizard property found.
This parameter will return whNull if no property is
found in the wizard matching the name.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments Fails if the property name is not found.

6-82 Chapter 6

 WizProp_GetBlock
int

WizProp_GetBlock(HCHUNK hChunk,
WHMEM whData,
LPSTR name,
DWORD dwMax,
LPVOID data,
LPDWORD dwSize)

Description Returns the data for a named wizard property that contains a block of data.
Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. This is the whData
parameter passed to Wizard_New or the whData
parameter passed to Wizard_Edit.

name Points to a null-terminated string containing the
property name.

dwMax Specifies the maximum number of bytes to return.

data Points to the buffer to receive the property data.

dwSize Points to a DWORD that indicates the number of
bytes actually stored in the data buffer.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments Fails if property name is not found. Only returns property if the property specified
by name is of type block.

Wizard API Function Reference 6-83

 WizProp_GetDouble
int

WizProp_GetDouble(HCHUNK hChunk,
WHMEM whData,
LPSTR name,
double FAR * data,
double dataDef)

Description Returns a floating point value for the named wizard property.
Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. This is the whData
parameter passed to Wizard_New or the whData
parameter passed to Wizard_Edit.

name Points to a null-terminated string containing the
property name.

data Points to a double that will receive the value of the
property.

dataDef Specifies the default value to return in the data if the
property is not found.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments Fails if property name is not found or the property type is not DOUBLE.

6-84 Chapter 6

 WizProp_GetDWord
int

WizProp_GetDWord(HCHUNK hChunk,
WHMEM whData,
LPSTR name,
LPDWORD data,
DWORD dataDef)

Description Returns a double word (32-bit) value for the named wizard property.
Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. This is the whData
parameter passed to Wizard_New or the whData
parameter passed to Wizard_Edit.

name Points to a null-terminated string containing the
property name.

data Points to a DWORD that will receive the value of
the property.

dataDef Specifies the default value to return in the data if the
property is not found.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments Fails if property name is not found or the property type is not DWORD.

Wizard API Function Reference 6-85

 WizProp_GetExpr
int

WizProp_GetExpr(HCHUNK hChunk,
WHMEM whData,
LPSTR name,
DWORD dwMax,
LPSTR data,
LPSTR dataDef)

Description Returns the data for a named wizard property that contains an expression.
Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. This is the whData
parameter passed to the Wizard_New or the
whData parameter passed to the Wizard_Edit.

name Points to a null-terminated string containing the
property name.

dwMax Specifies the maximum number of bytes to return.

data Points to the buffer to receive the property data.

dataDef Specifies the default value to return in the data if the
property is not found.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments Fails if property name is not found or the property type is not EXPR. Use this
property type for any expression, or tagname property. This will expose the property
to InTouch as an expression and provide the standard support for expressions, such
as substitute tags, and automatic placeholder generation.

6-86 Chapter 6

 WizProp_GetFont
int

WizProp_GetFont(HCHUNK hChunk,
WHMEM whData,
LPSTR name,
LPLOGFONT logFont)

Description Returns the logical font data for the named wizard property.
Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. This is the whData
parameter passed to Wizard_New or the whData
parameter passed to Wizard_Edit.

name Points to a null-terminated string containing the
property name.

logFont Points to a LOGFONT structure that returns the
contents of the logical font property. LOGFONT is
a Windows structure.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments This function should be used instead of attempting to retrieve font settings using the
WizProp_GetBlock function. This function will isolate your code from differences
in how the LOGFONT structure is saved on all Windows and Windows NT
platforms. Also, if you are attempting to use the standard font property, 'ww_font',
to enable toolbar font operations on your wizard, you must use this function to
retrieve the font property.

Fails if property name is not found or the property type is not TEXT or BLOCK.

Wizard API Function Reference 6-87

 WizProp_GetStmt
int

WizProp_GetStmt(HCHUNK hChunk,
WHMEM whData,
LPSTR name,
DWORD dwMax,
LPSTR data,
LPSTR dataDef)

Description Returns the data for a named wizard property that contains a statement.
Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. This is the whData
parameter passed to the Wizard_New or the
whData parameter passed to the Wizard_Edit.

dwMax Specifies the maximum number of bytes to return.

data Points to the buffer to receive the property data.

dataDef Specifies the default value to return in the data if the
property is not found.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments Fails if property name is not found or the property type is not STMT. Use this
property type for any script property. This will expose the property to InTouch as a
script and provide standard support for scripts, such as substitute tags and automatic
placeholder generation.

6-88 Chapter 6

 WizProp_GetString
int

WizProp_GetString(HCHUNK hChunk,
WHMEM whData,
LPSTR name,
DWORD dwMax,
LPSTR data,
LPSTR dataDef)

Description Returns a NULL terminated string for the named wizard property.
Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. This is the whData
parameter passed to Wizard_New or the whData
parameter passed to Wizard_Edit.

name Points to a null-terminated string containing the
property name.

dwMax Specifies the maximum number of bytes to return,
including the null character.

data Points to the character array to receive the property
data.

dataDef Specifies the default value to return in the data if the
property is not found.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments Fails if property name is not found or the property type is not STRING. Do not use
this property type for expressions, tagnames or scripts. See WizProp_GetExpr or
WizProp_GetStmt for this purpose.

Wizard API Function Reference 6-89

 WizProp_New
int

WizProp_New(HCHUNK hChunk,
WHMEM whData,
LPSTR name,
char type,
WHMEM FAR *whProperty)

Description Creates a wizard property with the name and type specified.
Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. This is the whData
parameter passed to Wizard_New or the whData
parameter passed to Wizard_Edit.

name Points to a null-terminated string containing the
property name.

type Specifies the flags that determine the property type.
This parameter can be one of the following values:

Value Meaning

WIZPROP_TYPE_DWORD Specifies a DWORD
data type.

WIZPROP_TYPE_REAL Specifies a floating
point data type.

WIZPROP_TYPE_STRING Specifies a string
data type.

WIZPROP_TYPE_BLOCK Specifies a block
data type.

WIZPROP_TYPE_FONT Specifies a font data
type.

WIZPROP_TYPE_EXPR Specifies an
expression or
tagname type.

WIZPROP_TYPE_STMT Specifies a script
type. A script is a
series of InTouch
statements.

whProperty Points to a handle to the wizard property created.
This parameter will return whNull if the property
could not be created.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments Fails if property name exists.

6-90 Chapter 6

 WizProp_SetBlock
int

WizProp_SetBlock(HCHUNK hChunk,
WHMEM whData,
LPSTR name,
DWORD dwSize,
LPVOID data)

Description Sets the data for a named wizard property that contains a block of data.
Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. This is the whData
parameter passed to Wizard_New or the whData
parameter passed to Wizard_Edit.

name Points to a null-terminated string containing the
property name.

dwSize Specifies the number of bytes in the data buffer.

data Points to the buffer containing the property data.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments None.

 WizProp_SetDouble
int

WizProp_SetDouble(HCHUNK hChunk,
WHMEM whData,
LPSTR name,
double data)

Description Sets a floating point value for the named wizard property.
Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. This is the whData
parameter passed to Wizard_New or the whData
parameter passed to Wizard_Edit.

name Points to a null-terminated string containing the
property name.

data Specifies the property value.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments None.

Wizard API Function Reference 6-91

 WizProp_SetDWord
int

WizProp_SetDWord(HCHUNK hChunk,
WHMEM whData,
LPSTR name,
DWORD data)

Description Sets a double word (32-bit) value for the named wizard property.
Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. This is the whData
parameter passed to Wizard_New or the whData
parameter passed to Wizard_Edit.

name Points to a null-terminated string containing the
property name.

data Specifies the property value.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments None.

 WizProp_SetExpr
int

WizProp_SetExpr(HCHUNK hChunk,
WHMEM whData,
LPSTR name,
LPSTR data)

Description Sets the data for a name wizard property that contains an expression.
Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. This is the whData
parameter passed to the Wizard_New or the
whData parameter passed to the Wizard_Edit.

name Points to a NULL-terminated string containing the
property name.

data Points to the buffer to receive the property data.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments Use this property type for any expression, or tagname property. This will expose the
property to InTouch as an expression and provide the standard support for
expressions, such as substitute tags, and automatic placeholder generation.

6-92 Chapter 6

 WizProp_SetFont
int

WizProp_SetFont(HCHUNK hChunk,
WHMEM whData,
LPSTR name,
LPLOGFONT logFont)

Description Sets the logical font data for the named wizard property.
Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. This is the whData
parameter passed to Wizard_New or the whData
parameter passed to Wizard_Edit.

name Points to a null-terminated string containing the
property name.

logFont Points to a LOGFONT structure that defines the
characteristics of the logical font property.
LOGFONT is a Windows structure.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments This function should be used instead of attempting to store font settings using the
WizProp_SetBlock function. This function will isolate your code from differences
in how the LOGFONT structure is saved on all Windows and Windows NT
platforms. Also, if you are attempting to use the standard font property, 'ww_font',
to enable toolbar font operations on your wizard, you must use this function to store
the font property.

Wizard API Function Reference 6-93

 WizProp_SetStmt
int

WizProp_SetStmt(HCHUNK hChunk,
WHMEM whData,
LPSTR name,
LPSTR data)

Description Sets the data for a name wizard property that contains a statement.
Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. This is the whData
parameter passed to the Wizard_New or the
whData parameter passed to the Wizard_Edit.

name Points to a NULL-terminated string containing the
property name.

data Points to the buffer to receive the property data.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments Use this property type for any script property. This will expose the property to
InTouch as a script and provide standard support for scripts, such as substitute tags
and automatic placeholder generation.

 WizProp_SetString
int

WizProp_SetString(HCHUNK hChunk,
WHMEM whData,
LPSTR name,
LPSTR data)

Description Sets a NULL terminated string for the named wizard property.
Parameter Description

hChunk Handle to the memory section containing the wizard
data.

whData Handle to the wizard's data. This is the whData
parameter passed to Wizard_New or the whData
parameter passed to Wizard_Edit.

name Points to a null-terminated string containing the
property name.

data Points to a null-terminated string containing the
property data.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments Do not use this property type for expressions, tagnames or scripts. See
WizProp_SetExpr or WizProp_SetStmt for this purpose.

6-94 Chapter 6

 WWDlg_CheckExprCtrl
int

WWDlg_CheckExprCtrl(HWND hDlg,
int ctrlID,
BYTE type)

Description Validates the dialog item using the standard InTouch validation of script
expressions. Error messages are automatically displayed when an error is detected.
Parameter Description

hDlg Identifies the dialog box.

ctrlID Specifies the identifier of the dialog box control that
contains text to validate as a script expression. The
control must be a Windows standard edit box
control.

type Specifies the flags that determine the expression
type. This parameter can be one of the following
values:

Value Meaning

TYPE_DISCRETE Specifies a discrete
expression.

TYPE_INTEGER Specifies an integer
expression.

TYPE_REAL Specifies a floating
point expression.

TYPE_STRING Specifies a string
(message)
expression.

TYPE_ANALOG Specifies an analog
expression. An
integer or floating
point expression is
allowed.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments None.

Wizard API Function Reference 6-95

 WWDlg_CheckTagCtrl
int

WWDlg_CheckTagCtrl(HWND hDlg,
int ctrlID,
BYTE type)

Description Validates the dialog item using the standard InTouch validation of database
tagnames. Error messages are automatically displayed when an error is detected.
Parameter Description

hDlg Identifies the dialog box.

ctrlID Specifies the identifier of the dialog box control that
contains text to validate as a database tagname. The
control must be a Windows standard edit box
control.

type Specifies the flags that determine the tagname type.
This parameter can be one of the following values:

Value Meaning

TYPE_DISCRETE Specifies a discrete
tagname.

TYPE_INTEGER Specifies an integer
tagname.

TYPE_REAL Specifies a floating
point tagname.

TYPE_STRING Specifies a string
(message) tagname.

TYPE_ANALOG Specifies an analog
tagname. An integer
or floating point
tagname is allowed.

TYPE_NUM Specifies an integer,
floating point or
discrete tagname.

TYPE_ALMGRP Specifies an indirect
alarm group
reference.

TYPE_HIST Specifies a historical
trend tagname.

TYPE_TAGID Specifies a tagname
ID type.

TYPE_ANY Specifies any
tagname type.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments None.

6-96 Chapter 6

 WWDlg_GetDoubleCtrl
int

WWDlg_GetDoubleCtrl(HWND hDlg,
int ctrlID,
REAL FAR * value)

Description Validates the dialog item using standard InTouch validation rules for floating point
values. The resulting value is returned.
Parameter Description

hDlg Identifies the dialog box.

ctrlID Specifies the identifier of the dialog box control that
contains text to validate and convert to a floating
point value. The control must be a Windows
standard edit box control.

value Points to a REAL that returns the converted floating
point value.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments None.

 WWDlg_ProcessKeyCtrl
int

WWDlg_ProcessKeyCtrl(HWND hDlg,
int enableKeyCtrlID,
int ctrlID)

Description Processes messages to the key-equivalent handling controls.
Parameter Description

hDlg Identifies the dialog box.

enableKeyCtrlID Specifies the identifier of the dialog box control that
enables or disables the key equivalent controls. It is
used in the key equivalent combination and must be
a check box control.

ctrlID Specifies the identifier of the dialog box control to
which the message has been sent.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments WWDlg_ProcessKeyCtrl should be called for message sent to any of the key
equivalent controls. It will process those messages appropriately.

Wizard API Function Reference 6-97

 WWDlg_RegisterColorCtrl
int

WWDlg_RegisterColorCtrl(HWND hDlg,
int ctrlID,
DWORD color)

Description Registers a dialog item to use the standard InTouch color choice dialog.
Parameter Description

hDlg Identifies the dialog box.

ctrlID Specifies the identifier of the dialog box control that
uses the standard InTouch color choice dialog. The
control must be a Windows standard list box control
with LBS_NOTIFY enabled.

color Specifies the initial color for the dialog box control.
Colors are specified in Windows standard RGB
format.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments Make sure that WWDlg_UnregisterColorCtrl is called to free any associated
memory.

6-98 Chapter 6

 WWDlg_RegisterKeyCtrl
int

WWDlg_RegisterKeyCtrl(HWND hDlg,
int enableKeyCtrlID,
int ctrlKeyCtrlID,
int shiftKeyCtrlID,
int selectKeyCtrlID,
int keyTextCtrlID,
DWORD dwPropKeyCode,
DWORD dwPropKeyFlags)

Description Registers a set of dialog items to obtain key-equivalent handling information for the
wizard.
Parameter Description

hDlg Identifies the dialog box.

enableKeyCtrlID Specifies the identifier of the dialog box control that
enables or disables the key equivalent controls. Is
used in the key equivalent combination. Must be a
check box control.

ctrlKeyCtrlID Specifies the identifier of the dialog box control that
specifies if the "ctrl" key is used in the key
equivalent combination. Must be a check box
control.

shiftKeyCtrlID Specifies the identifier of the dialog box control that
specifies if the "shift" key is used in the key
equivalent combination. Must be a check box
control.

selectKeyCtrlID Specifies the identifier of the dialog box control that
displays the standard InTouch key selection dialog.
Must be a push button control.

KeyTextCtrlID Specifies the identifier of the dialog box control that
displays chosen key equivalent text. Must be a static
text control.

dwPropKeyCode Key code for the selected Key (zero means no key
selected). Uses virtual key codes as defined in
WINDOWS.H.

dwPropKeyFlags Key flags values.

Value Meaning

TOUCH_KS_SHIFT Use shift key.

TOUCH_KS_CTRL Use ctrl key.

0 No flags.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments None.

Wizard API Function Reference 6-99

 WWDlg_RegisterTagNameCtrl
int

WWDlg_RegisterTagNameCtrl(HWND hDlg,
int ctrlID)

Description Registers a dialog item to respond to a double-click by displaying the standard
tagname selection dialog.
Parameter Description

hDlg Identifies the dialog box.

ctrlID Specifies the identifier of the dialog box control that
uses the standard Tagname Selection Dialog.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments None.

 WWDlg_ScriptEdit
VOID

WWDlg_ScriptEdit(HWND hDlg,
HCHUNK hChunk,
LPSTR lpString)

Description Displays a generic script editing dialog.
Parameter Description

hDlg Identifies the dialog box.

hChunk Memory handle.

lpString Points to an area of memory that will receive the
script text.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments The caller of WWDlg_ScriptEdit is responsible for allocating adequate memory
for the resulting script statement. The Define (STMT_STRLEN) has been provided
for that purpose. The memory allocated for the script should be globally allocated
and should be freed when no longer needed.

6-100 Chapter 6

 WWDlg_SetDoubleCtrl
int

WWDlg_SetDoubleCtrl(HWND hDlg,
int ctrlID,
REAL value)

Description Sets the dialog item with the character representation for the floating point value
specified.
Parameter Description

hDlg Identifies the dialog box.

ctrlID Specifies the identifier of the dialog box control that
contains text representing a floating point value.
The control must be a Windows standard edit box
control.

value Specifies the floating point value to convert to text.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments None.

 WWDlg_UnregisterColorCtrl
int

WWDlg_UnregisterColorCtrl(HWND hDlg,
int ctrlID,
DWORD FAR *color)

Description Unregisters a dialog item that was registered using WWDlg_RegisterColorCtrl.
Any memory used is freed and the current color selection is returned.
Parameter Description

hDlg Identifies the dialog box.

ctrlID Specifies the identifier of the dialog box control that
uses the standard InTouch color choice dialog. The
control must be a Windows standard list box control
with LBS_NOTIFY enabled.

color Points to a DWORD that returns the current color
selection.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments None.

Wizard API Function Reference 6-101

 WWDlg_UnregisterKeyCtrl
int

WWDlg_UnregisterKeyCtrl(HWND hDlg,
int enableKeyCtrlID,
DWORD FAR * dwPropKeyCode,
DWORD FAR * dwPropKeyFlags)

Description Unregisters the set of dialog items to that were registered in
WWDlg_RegisterKeyCtrl. Frees any memory associated with the mapping of
dialog items.
Parameter Description

hDlg Identifies the dialog box.

enableKeyCtrlID Specifies the identifier of the dialog box control that
enables or disables the key equivalent controls. Is
used in the key equivalent combination. Must be a
check box control.

dwPropKeyCode Key code for the selected Key (zero means no key
selected). Uses virtual key codes as defined in
windows.h.

dwPropKeyFlags Key flags values:

Value Meaning

TOUCH_KS_SHIFT Use shift key.

TOUCH_KS_CTRL Use ctrl key.

0 No flags.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments The selected key code and key flags are returned in dwPropKeyCode and
dwPropKeyFlags.

6-102 Chapter 6

 WWDlg_UnregisterTagNameCtrl
int

WWDlg_UnregisterTagNameCtrl(HWND hDlg,
int ctrlID)

Description Unregisters a dialog item that was registered using
WWDlg_RegisterTagnameCtrl. Any memory is freed and the control takes on its
standard Windows capabilities.
Parameter Description

hDlg Identifies the dialog box.

ctrlID Specifies the identifier of the dialog box control that
uses the standard Tagname Selection Dialog.

Return Value The return value is the error status of the function. 0 indicates success. A non-zero
value is an error status.

Comments None.

 WWKit_GetKeyStatus
BOOL

WWKit_GetKeyStatus(VOID)

Description Retrieves the current status of the Wonderware hardware key.

Return Value The return value is the status of the key. TRUE indicates that the key is attached to
the parallel port and is functioning normally. FALSE indicates either the key is not
attached or is not functioning.

Comments This function could be used by third-party Wizard developers to implement a copy-
protection scheme for their product. For example, the developer of the wizard can
choose to only make a certain subset of their wizard's functionality available when
the key is not there (demo mode). See also the function
WWKit_GetSerialNumber.

Wizard API Function Reference 6-103

 WWKit_GetLastError
int

WWKit_GetLastError(VOID)

Description Returns the error status of the most recent call to the Wizard Toolkit.
Parameter Description

Return Value The return value, if non-zero, indicates the error
status. 0 indicates the most recent call was
successful.

Value Meaning

1 unsupported
function

2 out of memory

3 wizard read error

10 object null

11 object bad type

20 property not found

21 property exists

22 bad property type

23 property type
mismatch

24 property name too
long

30 invalid access data

31 invalid access ID

32 invalid item name

33 problem with
tagname

34 problem with
tagname type

35 problem with
expression

36 problem with
expression type

37 problem with
application/topic

6-104 Chapter 6

Value Meaning

38 problem with Stmt
expression

40 problem with text
too long

41 problem with dllojb
not found

42 problem with trend
object - sample
parameter

43 problem with trend
object span units

44 problem with trend
object span units

45 problem with trend
object min/max
relationship

46 bad time parameter

47 bad mode parameter

50 link type invalid

51 alarm type invalid

52 error from Lnk_New

Comments WWKit_GetLastError will clear the error condition.

 WWKit_GetSerialNumber
DWORD

WWKit_GetSerialNumber(VOID)

Description Retrieves the serial number of the Wonderware hardware key.

Return Value The return value is the serial number of the key.

Comments This function could be used by third-party Wizard developers to implement a copy-
protection scheme for their product. For example, the developer of the wizard can
choose to only make their wizard function when certain numbered keys are attached.
See also the function WWKit_GetKeyStatus.

Wizard API Function Reference 6-105

 WWKit_Init
VOID

WWKit_Init(VOID)

Description Initializes the wizard tool kit if not previously done so. This call must be done once
per wizard DLL.

Return Value None.

Comments None.

 WWKit_SetBrush
VOID

WWKit_SetBrush(LPLOGBRUSH lpLogBrush)

Description Sets the brush used when manipulating objects that have a brush associated with
them.
Parameter Description

lpLogBrush Points to a LOGBRUSH structure that defines the
characteristics of the logical brush used for objects
that require one. LOGBRUSH is a Windows
structure.

Return Value None.

Comments The logical brush does not need to be modified until an object is created that
requires a different logical brush. The logical brush is used for InTouch objects that
allow fill color selection.

 WWKit_SetFont
VOID

WWKit_SetFont(LPLOGFONT lpLogFont)

Description Sets the font used when manipulating objects that have a font associated with them.
Parameter Description

lpLogFont Points to a LOGFONT structure that defines the
characteristics of the logical font used for objects
that require one. LOGFONT is a Windows
structure.

Return Value None.

Comments The logical font does not need to be modified until an object is created that requires
a different logical font. The logical font is used for InTouch objects that allow font
selection.

6-106 Chapter 6

 WWKit_SetPen
VOID

WWKit_SetPen(LPLOGPEN lpLogPen)

Description Sets the pen used when manipulating objects that have a pen associated with them.
Parameter Description

lpLogPen Points to a LOGPEN structure that defines the
characteristics of the logical pen used for objects
that require one. LOGPEN is a Windows structure.

Return Value None.

Comments The logical pen does not need to be modified until an object is created that requires
a different logical pen. The logical pen is used for InTouch objects that allow line
color and width selection.

 WWKit_SetTextBrush
VOID

WWKit_SetTextBrush(LPLOGBRUSH lpLogBrush)

Description Sets the text brush used when manipulating objects that have a text brush associated
with them.
Parameter Description

lpLogBrush Points to a LOGBRUSH structure that defines the
characteristics of the logical brush used for objects
that require a text logical brush. LOGBRUSH is a
Windows structure.

Return Value None.

Comments The text logical brush does not need to be modified until an object is created that
requires a different text logical brush. The text logical brush is used for InTouch
objects that allow text background color selection.

 WWKit_SetTextPen
VOID

WWKit_SetTextPen(LPLOGPEN lpLogPen)

Description Sets the text pen used when manipulating objects that have a text pen associated
with them.
Parameter Description

lpLogPen Points to a LOGPEN structure that defines the
characteristics of the logical pen used for objects
that require a text logical pen. LOGPEN is a
Windows structure.

Return Value None.

Comments The text logical pen does not need to be modified until an object is created that
requires a different text logical pen. The text logical pen is used for InTouch objects
that allow text color selection.

7-1

C H A P T E R 7

Wizard API Structures

The Wizard Toolkit contains several structures associated with the Wizard API
functions. These structures are defined in alphabetic order in this chapter.

Contents
n Wizard API Structures

7-2 Chapter 7

 ACCESSNAMEINFO
typedef struct {

LPSTR application;
LPSTR topic;
WORD bRequestInitialData;
WORD bAlwaysAdvise;

} ACCESSNAMEINFO, FAR* LP_ACCESSNAMEINFO;

Description The ACCESSNAMEINFO structure contains information used to define Access
Names. Items in the structure are set and passed to AccessName_New and
AccessName_SetInfo.
Element Description

application Points to a null-terminated string that specifies the
application name

topic Points to a null-terminated string that specifies the
topic name

bRequestInitialData If TRUE, set "Request initial data", if FALSE,
"wait for change"

bAlwaysAdvise If TRUE, set "advise all points", if FALSE advise
only active points

See Also AccessName_New, AccessName_SetInfo

 ANLGTAGINFO
typedef struct {

double initValue;
} ANLGTAGINFO, FAR* LP_ANLGTAGINFO;

Description The ANLGTAGINFO structure contains information to set the initial value of an
analog database tagname. Items in the structure are set and passed to the
AnlgTag_SetInfo function. The AnlgTag_GetInfo function returns the
information in this structure.
Element Description

initValue Specifies the initial value for the analog tagname

Comments The initValue field in the structure is CAST appropriately to REAL or INTG,
depending on the type of the database tagname.

See Also AnlgTag_GetInfo, AnlgTag_SetInfo

Wizard API Structures 7-3

 DEVALARMINFO
typedef struct {

WORD majorAlarmState;
WORD minorAlarmState;
WORD majorAlarmPriority;
WORD minorAlarmPriority;
REAL majorAlarmValue;
REAL minorAlarmValue;
REAL alarmDeadband;
double devTarget;

} DEVALARMINFO, FAR* LP_DEVALARMINFO;

Description The DEVALARMINFO structure contains information to set the deviation alarm
fields in the database tagname. Items in the structure are set and passed to the
Tag_SetDeviationAlarm function.
Element Description

majorAlarmState Specifies the major deviation alarm state

minorAlarmState Specifies the minor deviation alarm state

majorAlarmPriority Specifies the major deviation alarm priority

minorAlarmPriority Specifies the minor deviation alarm priority

majorAlarmValue Specifies the major deviation alarm value

minorAlarmValue Specifies the minor deviation alarm value

alarmDeadband Specifies the deviation alarm deadband

devTarget Specifies the deviation target (CAST for type)

See Also Tag_SetDeviationAlarm

7-4 Chapter 7

 DISCALARMINFO
typedef struct {

WORD alarmState;
WORD alarmPriority;

} DISCALARMINFO, FAR* LP_DISCALARMINFO;

Description The DISCALARMINFO structure contains information to set the discrete alarm
fields in the database tagname. Items in the structure are set and passed to the
Tag_SetDiscAlarm function.
Element Description

alarmState Specifies the alarm state

Value Meaning

ALARMSTATE_NONE No alarm state

ALARMSTATE_OFF Alarm is off

ALARMSTATE_ON Alarm is on

alarmPriority Specifies the alarm priority

See Also Tag_SetDiscAlarm

 DISCTAGINFO
typedef struct {

WORD initValue;
LPSTR onMsg;
LPSTR offMsg;

} DISCTAGINFO, FAR* LP_DISCTAGINFO;

Description The DISCTAGINFO structure contains information to set initial value and the
On/Off message fields in a discrete database tagname. Items in the structure are set
and passed to the DiscTag_SetInfo function. The DiscTag_GetInfo function
returns the information in this structure.
Element Description

initValue Specifies the initial value (on or off)

onMsg Points to a null-terminated string that specifies the
on value message

offMsg Points to a null-terminated string that specifies the
off value message

See Also DiscTag_GetInfo, DiscTag_SetInfo

Wizard API Structures 7-5

 ROCALARMINFO
typedef struct {

WORD alarmState;
WORD alarmPriority;
WORD rocUnits;
REAL pctChange;

} ROCALARMINFO, FAR* LP_ROCALARMINFO;

Description The ROCALARMINFO structure contains information to set the rate of change
alarm fields in the database tagname. Items in the structure are set and passed to the
Tag_SetRateOfChangeAlarm function.
Element Description

alarmState Specifies the alarm state

alarmPriority Specifies the alarm priority

rocUnits Specifies the rate of change units

pctChange Specifies the percent change value

See Also Tag_SetRateOfChangeAlarm

 STRTAGINFO
typedef struct {

WORD nMaxString;
LPSTR initValue;

} STRTAGINFO, FAR* LP_STRTAGINFO;

Description The STRTAGINFO structure contains information to set the initial value and
maximum string length for a message tagname. Items in the structure are set and
passed to the StrTag_SetInfo function.
Element Description

nMaxString Specifies the maximum string length

initValue Points to a null-terminated string that specifies the
initial value

See Also StrTag_SetInfo

7-6 Chapter 7

 TAGACCESSINFO
typedef struct {

DDESOURCE accessID;
LPSTR itemName;

} TAGACCESSINFO, FAR* LP_TAGACCESSINFO;

Description The TAGACCESSINFO structure contains information to set the retentive flags in a
database tagname. The items in the structure are set and passed to the Tag_New and
Tag_SetAccessInfo functions. The Tag_GetAccessInfo function returns the value
in the TAGACCESSINFO structure.
Element Description

accessID Access ID, as returned from AccessName_Find,
AccessName_FindApplTopic, or
AccessName_New

itemName Points to a null-terminated string that specifies the
I/O point item name

See Also Tag_GetAccessInfo, Tag_New, Tag_SetAccessInfo

 TAGEVENTINFO
typedef struct {

WORD bEnabled;
WORD priority;

} TAGEVENTINFO, FAR* LP_TAGEVENTINFO;

Description The TAGEVENTINFO structure contains information to set the event flags in a
database tagname. The items in the structure are set and passed to the
Tag_SetEventInfo function.
Element Description

bEnabled bEnabled is set to TRUE if event logging is enabled
for this tagname

priority Set to the event logging priority of this tagname

See Also Tag_SetEventInfo

Wizard API Structures 7-7

 TAGINFO
typedef struct {

WORD type;
WORD accessType;
WORD used;
LPSTR name;
LPSTR comment;

} TAGINFO, FAR* LP_TAGINFO;

Description The TAGINFO structure contains information to set the basic information in a
database tagname. The items in the structure are set and passed to the Tag_SetInfo
function. The Tag_GetInfo function returns the data via the TAGINFO structure.
Element Description

type Specifies the type of tagname. See Tag_New for
valid tagname types.

accessType Access type, either memory, indirect or I/O

Value Meaning

ACCESS_MEM Tag is a memory
tagname

ACCESS_DDE Tag is a I/O type
tagname

ACCESS_IND Tag is an indirect
tagname

used Set to TRUE if used

name Points to a null-terminated string that specifies the
tagname

comment Points to a null-terminated string that specifies the
comment field

See Also Tag_GetInfo, Tag_SetInfo

 TAGRETENTIVEINFO
typedef struct {

WORD bValue;
WORD bAlarmParams;

} TAGRETENTIVEINFO, FAR* LP_TAGRETENTIVEINFO;

Description The TAGRETENTIVEINFO structure contains information to set the retentive flags
in a database tagname. The items in the structure are set and passed to the
Tag_SetRetentiveInfo function.
Element Description

bValue Set to TRUE if it's a retentive value

bAlarmParams Set to TRUE if alarm parameters are saved

See Also Tag_GetRetentiveInfo, Tag_SetRetentiveInfo

7-8 Chapter 7

 TAGSCALEINFO
typedef struct {

WORD inputConv;
double minValue;
double maxValue;
double minRawValue;
double maxRawValue;
double deadband;

} TAGSCALEINFO, FAR* LP_TAGSCALEINFO;

Description The TAGSCALEINFO structure contains information to set the scaling information
in a database tab. The items in the structure are set and passed to the
Tag_SetScalingInfo function.
Element Description

inputConv Specifies the input conversion

 For Discrete Tags

 DISC_CONVERT_REVERSE

 DISC_CONVERT_DIRECT

 For Analog Tags

 ANLG_CONVERT_LINEAR

 ANLG_CONVERT_SQRT

minValue Specifies the minimum value

maxValue Specifies the maximum value

minRawValue Specifies the minimum raw value

maxRawValue Specifies the maximum raw value

deadband Specifies the value deadband

Comments The minValue, maxValue, minRawValue, maxRawValue fields should be CAST
appropriately to REAL or INTG, depending on the type of the tagname.

See Also Tag_SetScalingInfo

Wizard API Structures 7-9

 VALALARMINFO
typedef struct {

WORD hiHiAlarmState;
WORD hiAlarmState;
WORD loAlarmState;
WORD loLoAlarmState;
WORD hiHiAlarmPriority;
WORD hiAlarmPriority;
WORD loAlarmPriority;
WORD loLoAlarmPriority;
REAL hiHiAlarmValue;
REAL hiAlarmValue;
REAL loAlarmValue;
REAL loLoAlarmValue;
REAL alarmDeadband;

} VALALARMINFO, FAR* LP_VALALARMINFO;

Description The VALALARMINFO structure contains information for value alarm fields within
a database tagname. Items in the structure are used to set fields in the database
pertaining to alarms using the Tag_SetValueAlarm.
Element Description

hiHiAlarmState Specifies the HiHi alarm state

hiAlarmState Specifies the Hi alarm state

loAlarmState Specifies the Lo alarm state

loLoAlarmState Specifies the LoLo alarm state

hiHiAlarmPriority Specifies the HiHi alarm priority

HiAlarmPriority Specifies the Hi alarm priority

loAlarmPriority Specifies the LoLo alarm priority

loLoAlarmPriority Specifies the Lo alarm priority

hiHiAlarmValue Specifies the HiHi alarm value

hiAlarmValue Specifies the Hi alarm value

loAlarmValue Specifies the Lo alarm value

loLoAlarmValue Specifies the LoLo alarm value

alarmDeadband Specifies the deviation alarm deadband

See Also Tag_SetValueAlarm

7-10 Chapter 7

8-1

C H A P T E R 8

Testing and Debugging Wizards

This chapter outlines the issues that should be considered when testing and
debugging wizards. Even though the complexity of wizards can range from simple
to extremely complex, there are several testing issues that need to be considered for
every wizard. This chapter describes various tests that the Wizard developer should
perform on all wizards and wizard DLLs once they are installed into
WindowMaker. Performing these tests will ensure that your Wizards have been
developed accurately and are completely functional.

This chapter also describes how to debug your Wizards using CodeView for
Windows, Visual C++ Debugger, or by sending debug messages to the Wonderware
Logger program.

Contents
n Testing Guidelines for Wizards

n Sending Debug Messages to the Wonderware Logger

n Using CodeView to Debug the Wizard DLL

n Using Visual C++ to Debug

8-2 Chapter 8

 Testing Guidelines for Wizards
 We highly recommend that you perform the various tests described in this section to
ensure that the wizards you have developed function properly after they are installed
in WindowMaker.

 Testing a Newly Installed Wizard
 After you have installed your new wizards in WindowMaker, perform the
following test to ensure that they installed properly:

1. Click the Wizard tool on the Wizard/ActiveX Toolbar in WindowMaker. The
Wizard Selection dialog box will appear.

2. Click on the name of the category for the new wizard(s). (The wizard should
appear in area to the right of the category listing.)

3. Click on the new wizard(s) to verify that its description is correct.

4. Select each wizard and then, click Add to toolbar to add each wizard to the
Wizard/Active X Toolbar.

5. Try adding wizards that are already in the toolbar. (If functioning properly, a
message box will appear informing you that the wizard is already in the
toolbar.)

6. Click Cancel to close the Wizard Selection dialog box and return to
WindowMaker.

7. Check the Wizard/ActiveX Toolbar to verify that the newly added wizard(s)
is there.

8. Click on the new wizard(s). Does its bitmap appear pushed in?

9. Move your mouse over the wizard in the toolbar. Does its tool tip description
appear?

10. Undo and redo the creation of the wizard.

11. Remove combinations of wizards from the toolbar. In the Wizard Selection
dialog box, select each wizard and then, click Remove from toolbar.

12. Close the Wizard Selection dialog box and return to WindowMaker to verify
that the wizards selected for removal are no longer in the toolbar.

Testing and Debugging Wizards 8-3

 Testing Wizard Sizing
 If the wizard was designed to be resized (most will be) the Wizard.DLL has to
rebuild every object in the wizard based on the new size chosen by the user. To test
a wizard's sizing, click on the wizard to select it then drag the selection handles to:

1. Size the wizard smaller in the horizontal direction.

2. Size the wizard larger in the horizontal direction.

3. Size the wizard smaller in the vertical direction.

4. Size the wizard larger in the vertical direction.

5. Size the wizard in a combination of these cases.

6. Size the wizard in a random sequence. You should be able to resize a wizard to
an earlier size and have it achieve the same characteristics as the older size.
Also, re-sizing a wizard should not cause the wizard to "enlarge" or "shrink"
unexpectedly.

7. Verify that the aspect ratio of the wizard is maintained when the wizard is
scaled.

8. When sizing the wizard, do text objects properly scale? Some text objects may
be fixed or not related to the size of the wizard, while other text objects may be
scaled as a ratio of the wizard.

9. Undo and redo the wizard's size and make sure the wizard properly refreshes.
Pay special attention to any selection handles that should appear on the wizard.
Select and move the wizard to assure that the handles and wizard have been
properly refreshed.

8-4 Chapter 8

 Testing Wizard Editing Capabilities
 Editing is allowed on wizards that have implemented the function Wizard_Edit.
Editing a wizard simply changes its configuration properties. A "smart cell" rebuilds
the wizard automatically based on the wizard's new configuration. Internal contents
of a wizard may change based on the configuration of the wizard. To test the editing
capabilities of a wizard, perform the following steps:

1. Edit the wizard by double-clicking on the wizard to display the wizard's
configuration dialog box.

2. Use the TAB key to move from item-to-item in the dialog. Does the tabbing
sequence follow Microsoft User Interface Guidelines?

3. Repeat step 2 using the arrow keys (especially within radio button groups).
Make sure the arrow keys wrap around within the radio button group.

4. When the dialog box initially appears, is there an edit field or button that has
properly been given focus? If the focus is on an edit field, is the entire contents
pre-selected?

5. Does the dialog box have a proper title for the wizard being edited? Is it
consistent? The style of the wizard dialog should be DS_MODALFRAME
which will show up as a "fat" border. The wizard dialog should NOT have a
system menu.

6. The dialog must be modal. The wizard dialog must not allow you to get to
menus or windows of WindowMaker. Test this by trying to access
WindowMaker. However, you should be able to switch to another application.

7. Verify the operation of the Cancel or similar operation. This operation should
cause any modifications made in the dialog to have no effect.

8. Verify the operation of the OK or similar operation.

9. Undo and redo the wizard's editing and make sure the wizard properly
refreshes. Pay special attention to any selection handles that should appear on
the wizard. Select and move the wizard to insure that the handles and wizard
have been properly refreshed.

10. Edit a wizard, but click only OK. Make sure the wizard size does not change.
In general, clicking OK without making changes should not affect the wizard.
The wizard should only change if a new version of the wizard has been
installed. But once the wizard has changed based on the new version, it should
not change if you reenter the edit dialog box and click OK.

Testing and Debugging Wizards 8-5

 Testing Wizard Configurations
 For a wizard that supplies a configuration dialog box, you must verify the wizard in
as many configuration combinations as possible. Test each of the following cases as
applicable to the wizard:

1. Verify limit checking on any numeric entry field.

2. Verify maximum data entry in any text entry field.

3. Verify tagname checking on any field allowing tagnames. If the tagname field
requires specific types, check to make sure only the proper types are allowed.
When you double-click in the field does the tagname selection dialog appear?

4. Verify expression checking on any field allowing expressions. If the expression
field requires specific types, check to make sure only the proper types are
allowed. When you double-click in the field, does the proper WindowMaker
dialog box for expression fields appear? The dialog box that appears may
change based on the position of the cursor in relation to the text in the field.
Enter real expressions.

5. Verify checking on numeric fields that are related to one another. For example,
a minimum value field should not have a value larger than that of a maximum
value field.

6. Verify that the color configurations appropriately effect objects that appear
within the wizard. For example, a light might have an ON and OFF color. Make
sure that the light draws properly after changing its configuration to either of
the two colors. The light may actually work in WindowViewer, but in
WindowMaker it may not appropriately show the right colors.

7. Verify that the color selection dialog box is used when changing colors. The
color selection dialog box should be the WindowMaker standard dialog.

8. Test each configuration in WindowViewer. At the very least, verify that each
field or selection in the dialog works.

8-6 Chapter 8

 Testing Toolbox Operations on a Wizard
 A number of toolbar operations may be allowed for an individual wizard. These
operations are optional for a wizard, but must not change based on modifications
made to the wizard. These operations include:

 Font Operations
• Bold, Italic, Underline

• Left Justify, Centered, Right Justify

• Reduce Font, Enlarge Font, Fonts. (Select Font)

 Object Operations
• Line Color, Fill Color, Text Color

Ø Do the following to test the toolbar operations for the wizard:

1. Verify that the operations allowed for the wizard are properly enabled/disabled
when the wizard is first placed.

2. Verify that the operations allowed for the wizard are properly enabled/disabled
after the wizard has been resized.

3. Verify that the operations allowed for the wizard are properly enabled/disabled
after the wizard has been edited.

4. Perform each of the Font operations on a wizard that has text objects upon
which the Font operations can be applied.

5. Undo and redo the Font operations making sure the object properly refreshes.

6. Verify when performing Font operations, that all of the appropriate text objects
change.

7. Check the "performance" of Font operations. In some cases the wizard may be
unnecessarily performing internal text measurements on each text object within
the wizard that cause the wizard to rebuild (refresh) slowly.

8. Perform each of the Object operations on a wizard that supports Object
operations.

9. Undo and redo the Object operations making sure the object properly refreshes.

Testing and Debugging Wizards 8-7

 Special Wizard Tests
 The following special tests should be performed as applicable for the wizard:

1. Verify the placeholders show for exported wizards that have tagnames,
expression, or script properties.

2. Verify that none of the wizards "auto grow." This will happen if the wizard
rectangle (passed to Wizard Obj_New) does not encompass all of the objects it
contains (plus one pixel on each side).

3. Verify that the text in the wizard placeholders describes the correct type of
tagname/expression that can be used with each Wizard. For example,
?d:discrete.

4. Verify that no memory leaks are present. Using the GDI reading, in ResLog,
verify that the percentage of memory resources is not effected by repeated
executions of the Window Open command.

8-8 Chapter 8

 Sending Debug Messages to the
Wonderware Logger

 The Wonderware Logger program is very useful for debugging and logging error
condition messages, and so on. The Wizard developer can write debugging
messages to the Wonderware Logger by using the WWDBG.LIB debug library
supplied with the Wizard Toolkit.

To use the Wonderware Logger, the Wizard developer must add the debug.h file
(located in the /INC directory of the Wizard Toolkit) and the WWDBG.LIB file to
the project file.

 To set the program name field in the Wonderware Logger window, the Wizard
developer must call the initialization routing formatted as follows:

 DebugInit (LPSTR library_name)

Note If you pass an invalid application name to DebugInit(), the request will be
ignored, and "UNKNOWN" will be placed into the program name field. No error
message will be written to the Wonderware Logger. Valid application names are
from 1 to 16 characters, and it is recommended that you do not use the / or %
characters.

The string in library_name is truncated at 8 characters (length of space available in
the logger window). (We recommend using the Wizard DLL name.) Place
DebugInit in the DLL Startup routine (DLLMain for Windows NT), so that it is
only executed once. We suggest placing it into the case for
DLL_PROCESS_ATTACH.

int
WINAPI
DllMain(HANDLE hInstance, DWORD ul_reason_being_called,
LPVOID lpReserved)
{
 switch(ul_reason_being_called) {
 case DLL_PROCESS_ATTACH:
 // Initialize needed globals
 hDrawInst = hInstance;
 hDrawWnd = FindWindow("Wmak Class", NULL);
 DebugInit((LPSTR) "WIZ1");
 WWKit_Init();
 break;
 case DLL_THREAD_ATTACH:
 break;
 case DLL_PROCESS_DETACH:
 break;
 case DLL_THREAD_DETACH:
 break;
 default:
 break;
 }

 return 1;
}

Testing and Debugging Wizards 8-9

To send a debug message to the logger, format the string as follows:

 debug("format_string", variable list ...);

where: format_string is a format_string used by vsprintf.

For example:

 debug("wizard index = %d", index);

 debug("loaded bitmap %s", name);

 Using CodeView to Debug the Wizard
DLL

 CodeView for Windows can also be used to debug a wizard DLL. When you use
CodeView, be sure to remember to debug WindowMaker (WM.EXE) and load the
DLL. Either load the DLL using the /l dll_name option on the cvw command line,
or load it from the Run menu pull down under Load

There will be no symbols available for WindowMaker; however, there will be
symbols for the wizard DLL. Breakpoints, source, watch variables, and so on, will
be available just as if you were debugging an EXE. If there are no symbols for the
wizard DLL, then check the build options on the project and ensure it was built for
debug.

8-10 Chapter 8

 Using Visual C++ to Debug
 Visual C++ includes a built-in debugger that makes it very simple to go straight
from writing code to testing your wizards. Use the following steps to set up your
Visual C++ environment for debugging.

1. Make sure you have built your Wizard DLL in 'Debug Mode'. To set this mode,
on the Options menu select Project and then, select Build Mode. It is also
important to set the switches. To do so, on the Options menu, select Project
and then, select Compiler. A typical set of compiler switches to use for
debugging is:

 /nologo /Gs /G2 /Zp1 /W4 /Z7 /AMw /Od /D "_DEBUG" /D "_WINDOWS"
/D "_WINDLL" /FR /Gw

 A typical set of linker switches to use for debugging is:

 /NOLOGO /LIB:"libw" /LIB:"mdllcew" /LIB:"oldnames" /NOD /NOE
/PACKC:61440 /SEG:256 /ALIGN:16 /ONERROR:NOEXE /CO /MAP:FULL

2. Since WindowMaker will be calling your Wizard DLL to use the wizard, you
have to set up a 'Calling Program.' To do so, on the Options menu, select
Debug and enter the full path to WindowMaker (for example, C:\Program
Files\FactorySuite\INTOUCH\WM.EXE). Leave the Debugging Mode set to
Soft.

3. Set a breakpoint in your code (a place to stop during execution) by placing your
cursor on the desired line and selecting Breakpoints. Click Add to add the
breakpoint to your list. You can set multiple breakpoints this way by adding to
the list.

4. To start debugging, select Go on the Debug menu. Visual C++ will start
WindowMaker normally. You want to open a window and use the Wizard
(place it on the screen as you would normally). WindowMaker will call your
Wizard DLL (and execute your wizard code). When the code execution gets to
your breakpoint, Visual C++ will take the focus and the stop at that point. You
can then step through the code using the options under the Debug menu (Step
Into, Step Over, and so on)

When you are done debugging, select Go on the Debugmenu and let the wizard
DLL process to completion. It will then give control back to WindowMaker. You
can then close WindowMaker normally.

9-1

C H A P T E R 9

InTouch QuickScript Functions

 Welcome to the InTouch QuickScript Functions Toolkit. By using the QuickScript
Functions Toolkit, a proficient C programmer can develop and embed custom
functions or subroutines which can be used either in InTouch QuickScripts or in
expressions displayed on InTouch windows.

Powerful scripts can be developed within InTouch utilizing a rich set of conditional
statements, functions, and data operators. For example, suppose an OEM wanted to
provide an error message handling routine that maps an error code from a device to
an error message. A simple C routine can be written to do the mapping and the
InTouch application developer can call a function such as "ErrorMessage
(errorNumber)" and retrieve an error message back. Furthermore, the script
extension developer can write an interface to the Window Help function that would
allow the InTouch user to bring up custom help screens by selecting the Help button
and then select which function they desire help on.

Since the output of the QuickScript Functions Toolkit is a Windows DLL, anything
that is callable through the standard Windows C interface is accessible through the
QuickScript Extension Toolkit. In order to maximize the benefits that the Toolkit
offers, it is important that you are capable of understanding and developing Window
DLLs.

The QuickScript Functions Toolkit consists of documentation, samples and the
necessary utilities to apply the InTouch QuickScripting feature.

Contents
n Getting Started with the QuickScript Toolkit

n Pasting Functions and Arguments

n Installing Your Script Extensions

n Combining the QuickScript Functions with IDEA

9-2 Chapter 9

 Getting Started with the QuickScript
Toolkit

 WindowMaker recognizes the existence of a script DLL by reading files with a
.WDF extension. This is an encrypted file that specifies the calling sequence of the
function, help information, and paste link information.

Once the input definition file is created it needs to be converted from an input file to
a .WDF file via the CRYPT utility program by using the following format:

 CRYPT in file, out file /e.

 For example:

 CRYPT testfile.idf testfile.wdf /e

l Each function in the script DLL is specified on a separate line. These functions
are called by WindowMaker and are integrated into WindowMaker in the same
manner as other script functions.

l The function should follow this format:

 User Function name, Help file name, Help file index, Ignore Return Value,
Script Flags, Paste Argument String, Paste Function, DLL Function name, DLL
export name, Function Type, Return Type, Argument Types, and so on.

l A blank parameter must be separated by a space. For example: ", ," NOT ",,".

l The input definition file also contains a version information line. It appears on a
separate line and must be of the format "Version=nnn". The version number is
not case sensitive, however it is expected to be an integer number.

l Blank lines are allowed anywhere in the file except for the last line.

l Comment lines must begin with a semicolon ";".

The following lists the functions that are called by WindowMaker to access script
functionality:

InTouch QuickScript Functions 9-3

Parameter Description

User Function name Name of the function to the user.

Help file name Name of .HLP file.

Help file index Index in .HLP file.

Ignore Return Value This function does not necessarily return a result. It
only applies when the function is used in a script. If
"Ignore Return Value" is set to 1, the result of the
function does not need to be stored in a variable. If
"Ignore Return Value" is set to 0, the result must be
stored in a variable.

Script Flags Flags

For more information, see "Flags" later in this
chapter.

Paste Argument String Name of function to supply 'Paste Function and
Arguments' string.

Paste Function Name of DLL which supplies 'Paste Function and
Arguments' function. If this is blank, it will default
to the DLL that the function is in.

DLL Function name Name of DLL function.

DLL export name Name of export in DLL. This is the function name
as defined in the C code.

Function Type Calling type for function: PASCAL or C.

Return Type Return parameter type, such as:

INT
LONG
FLOAT
DOUBLE
STRING
WORD
DWORD
VOID

9-4 Chapter 9

Parameter Description

Argument Types The following parameter types are used when a
constant or the value of a tag is passed to the
function:

INT
LONG
FLOAT
DOUBLE
STRING
WORD
DWORD

The following types are pointer types. They are
used when the function intends to pass back a result
by changing one of the parameters. A tag must be
provided when the user uses the function and is
providing an entry for this argument:

LP_INT
LP_LONG
LP_FLOAT
LP_DOUBLE
LP_STRING
LP_WORD
LP_DWORD

No return is passed for the following parameter
type:

VOID
This can only be used with C calling conventions:

VARARG

InTouch QuickScript Functions 9-5

 Flags
 The flag parameter is a hexadecimal DWORD, packed with information about a
particular function. The lower word contains information about where and how a
function can be used. The upper word contains sorting information for the script
dialog procedures to categorize a function appropriately. The flags parameter is a
combined value of all appropriate flags and types.

Functionality Hex Value

Can be used in an expression or in QuickScripts 0x00000000

Use Only in QuickScripts 0x00000001

Display this function in Selection Box 0x00000008

 This function is InTouch Standard 0x00000020

Type of Function Hex Value

System Function 0x80000000

Recipe Function 0x40000000

SQL Access Function 0x20000000

SPC 0x10000000

Math Function 0x08000000

String 0x04000000

Miscellaneous Function 0x02000000

Note If you do not specify a function type, the function will not be displayed in the
WindowMaker script editor dialog box.

 Special Considerations
 If your function causes the machine to be suspended for an extensive period of time,
your InTouch application will also be suspended until the function has finished
executing.

Also, do not use Windows API calls that contain model loops that dispatch
messages or yields to other applications. (For example, MessageBox, DialogBox,
DDEML calls, PeekMessage, DispatchMessage, and so on.) Doing so may result in
WindowViewer processing a message in the middle of the execution of your script
function.

9-6 Chapter 9

 Pasting Functions and Arguments
 WindowMaker will automatically paste a "function help string" when the user
selects it from a selection box. The DLL writer must supply a function or functions
that return the syntax of the function and argument representations. WindowMaker
will also highlight sections of the argument list for the user. The paste function must
return character positions to mark the beginning and end of the section to highlight.

The function declaration would look like this:

/*
* DWORD ArgFunc(LPSTR funcName, LPSTR result);
* Note that the result buffer can only hold 100 characters.
*
* funcName is the name of the function that was chosen
* result is the result buffer
*
*/

The function file should always return a complete, syntactically correct string. This
means a full and correct function name, beginning and ending parentheses if
necessary, any arguments needed, and don't forget the semicolon, ';'.

 For example:

 SetDdeAppTopic(AccessName_Text, App_Text, Topic_Text);

These are some common keywords used in Paste Function Strings:

 Window_Text would specify "window"

 Tagname would be any tagname

 Number would be any type of number.

 Highlighting Replacement Values
 The DWORD value returned by the Paste function consists of two values: the start
and end position of a highlighted selection. Typically the developer of the DLL
would highlight the first parameter of the function. The user is then set up to do the
required editing after the paste. These values are zero based and do not include the
end position.

 For example:

 ErrorMessage(errorNumber);

 would return:

 MAKELONG (14,25).

If the function does not require a parameter to be highlighted, return 0. If the values
are the same, nothing will be highlighted but the cursor would be moved to that
position.

InTouch QuickScript Functions 9-7

 Installing Your Script Extensions
Simply install the script function by copying the DLL and .WDF files to your
InTouch directory. (The WDF file is the encrypted function definition file.)
Anything can be done in the DLL that's allowable. Be warned that when the
function is executed you have control of the processor and could tie up the system.

 Sample Script
 The following is a sample script function that returns an error message string for a
given error message number.

LPSTR
WINAPI
ErrorMessage(int nErrorNumber)
{
 int nLen;

 nLen = LoadString(hInst, nErrorNumber, (LPSTR) message,
 131);
 if (nLen <= 0){
 return ((LPSTR) "No message Found");
 } else {
 return (LPSTR) message;
 }
}

We will also supply a function for pasting the function name and arguments into the
text of the WindowMaker script. This function is structured to accommodate pasting
of strings for several functions.

DWORD
WINAPI
PasteBuiltInFuncs(LPSTR funcName, LPSTR result)
{
DWORD hilite=0;
 int i;

 lstrcpy(result, funcName);

 if(lstrcmpi(funcName, "ErrorMessage") == 0) {
 lstrcat(result, " (errorNumber);");
 hilite = MAKELONG(14, 27);
 }
 return(hilite);
}

WindowMaker will optionally call two routines, WWDllInit and WWDllFree, when
it tries to load the DLL and before it frees the DLL. These routines do not have to
be supplied but they can be useful if you need to have certain operations performed
on startup or shutdown.

9-8 Chapter 9

 The function prototypes for the routines are as follows:
void WINAPI WWDllInit (void);
void WINAPI WWDllFree(void);

Our sample does not require any special initialization or shutdown treatment, so
we'll just stub them out for completeness.

void
WINAPI
WWDllInit()
{
 /* do anything special that is required for the DLL */
 return;
}

void
WINAPI
WWDllFree()
{
 /* clean up anything that needs to be cleaned up */
 return;
}

We will also need a DLL entry routine (DLLMain for 32-bit Windows). In this case,
we need to save away our hInstance for use by LoadString.

int
WINAPI
DllMain(HANDLE hInstance, DWORD ul_reason_being_called,
LPVOID lpReserved)
{
 switch(ul_reason_being_called) {
 case DLL_PROCESS_ATTACH:
 hInst = hInstance; // save it for later
 break;
 case DLL_THREAD_ATTACH:
 break;
 case DLL_PROCESS_DETACH:
 break;
 case DLL_THREAD_DETACH:
 break;
 default:
 break;
 }

 return 1;
}

Of course, no DLL is complete without a DEF file. Since we only have one script
function in this DLL, the DEF is very simple.

LIBRARY ERRMSG
DESCRIPTION 'Copyright Wonderware Software Corp, 2000'

EXETYPE WINDOWS

''
EXPORTS
 ErrorMessage @1
 WWDllInit @2
 WWDllFree @3
 PasteBuiltInFuncs @4

InTouch QuickScript Functions 9-9

The RC file would contain the strings that would be returned for an individual error
number.

#include "windows.h"
STRINGTABLE
BEGIN
1, "Low Battery"
2, "Communication Failure"
3, "Device mismatch"
4, "Device I/O type mismatch"
5, "Configuration mismatch"
6, "System bus error"
7, "Failed battery"
8, "Stack is full or not there"
9, "PLC watchdog timer timed out"
END

The IDF file (un-encrypted input definition file) would contain a version
information line and one function definition line.

;
; ERRMSG.IDF
;
Version=1

ErrorMessage,errmsg.hlp,C030,1,0x20000028,PasteBuiltInFuncs,
 ERRMSG,ERRMSG,ErrorMessage,PASCAL,STRING,int

 Combining the QuickScript
Functions with IDEA

 A powerful combination is to use the IDEA Toolkit API within the QuickScript
Functions Toolkit. This is useful when reading large amounts of data from an
external source, generic functionality, where the names of the tags are configured
from an external source.

9-10 Chapter 9

10-1

C H A P T E R 1 0

IDEA Toolkit

 Man-Machine Interface (MMI) applications perform some very specific
computations involving data that is gathered and displayed by other MMI programs.
InTouch has facilities to accomplish user-coded computations; however, the
requirements of the application may preclude the use of InTouch built-in logic
processing. Sometimes, a package of proven, proprietary algorithms must be
incorporated into the overall MMI solution. For these situations, developers can use
the InTouch Database External Access (IDEA) Toolkit.

For programmers using Visual Basic, an InTouch OCX is also included with the
InTouch Extensibility Toolkit which greatly simplifies and streamlines the
programming task. The OCX provides notification of data changes so that the
programmer no longer needs to know the issues of polling in control applications.

Contents
n Requirements

n Functional Description

n Tag Handles and Memory Usage

n Accessing Remote Tags

n Program Examples

n IDEA Programs in the Windows NT Environment

n InTouch Notification of Tag Changes

n Running IDEA Toolkit Samples

n Function Reference

10-2 Chapter 10

 Requirements
 This toolkit is intended for use by experienced software developers. Mastery of the
programming language and development tools is a prerequisite to the toolkit's use.

 IDEA users who wish to develop a Windows program may work in Microsoft
C/C++, Microsoft Visual C/C++, and Microsoft Visual Basic. Microsoft C users
must have a Windows Software Development Kit if they are not using Microsoft
Visual C++.

Note Users who wish to work in the 32-bit Windows environment must use the
Microsoft Visual C++ development environment.

 Summary of IDEA Options & Requirements
Windows 95/98 Windows NT

Microsoft C/C++ Yes Yes

Microsoft Visual Basic Yes Yes

*Windows SDK Required Yes Yes

Type of Computer Pentium Pentium

 * Only if Microsoft Visual C++ is not used. Microsoft Visual C++ 6.0 Service
Pack 3 or later is highly recommended.

IDEA Toolkit 10-3

 IDEA Toolkit Contents
 Once the IDEA Toolkit has been installed, the following files and directories are
available:

 \INTOUCH DIRECTORY
 ITEDIT.OCX

 \IDEA\SAMPLES\CIDEAAPP

 Windows C++ 32-bit source code
equivalent to Example #2 via CIdea.

 \IDEA\LIB

 PTACC.LIB
 WWDBG.LIB
 WWHEAP.LIB

 \IDEA\SAMPLES\WINSIMPL

 Windows C 32-bit source code for
Example #2.

 \IDEA\INC

 PTACC.H
 DEBUG.H
 WWHEAP.H

 \IDEA\SAMPLES\WINCMPLX

 Windows C 32-bit source code for
Example #3.

 \IDEA\VB

 PTACC.BAS

 \IDEA\SAMPLES\ITAPP

Sample "DOCALC" InTouch
application.

 \IDEA\EXE

 Contains pre-built release-mode IDEA
application samples.

 \IDEA\SAMPLES\VBSIMPLE\VB6

 Visual Basic 6.0 32-bit example source
for Window NT.

 \IDEA\SAMPLES\VBSIMPLE\VB6\
VB6ITAPP

 InTouch 7.1 sample to interface with
Visual Basic 6.0 application.

10-4 Chapter 10

 Functional Description
An IDEA program that accesses InTouch data has the following structure:
1. Establish a connection (ACCID handle) with the InTouch runtime database by

calling PtAccInit.

2. Prepare to access specific tagnames by calling PtAccActivate for each tagname
to be accessed or changed. This creates HPT handles.

3. Read the specific tagnames that are needed as input for the algorithms by
calling PtAccReadD, PtAccReadI, PtAccReadR, PtAccReadA or
PtAccReadM.

4. Call PtAccOK to ensure that InTouch is still running and the tagnames that
were read are still valid.

5. Perform computations as needed.

6. Write the results back to the InTouch tagname database by calling
PtAccWriteD, PtAccWriteI, PtAccWriteR, PtAccWriteA or PtAccWriteM.

7. Repeat steps 3, 4, 5 and 6 as needed until time to shut down.

8. Shutdown by calling PtAccShutdown and exit.

Though the structure outlined in the previous steps is the simplest application of the
IDEA Toolkit, it is probably adequate for the majority of users' needs. Other
features are available to allow a more sophisticated program structure. Some of
these are:

l A Windows program written with Microsoft Visual C++ can register with
InTouch to be notified immediately when specific tagnames change values

l Refer to PtAccActivateAndNotify and PtAccActivateAndSendNotify

IDEA Toolkit 10-5

 Special Data Types
 Some special data types are used with the IDEA Toolkit functions. They are defined
in the files appropriate for each supported language.
ACCID This is an Access Id. It is used in most functions to identify a

connection to the InTouch database. A program must have at
least one Access Id to be able to access the database. The
program may have more than Access Id. Each variable accessed
is associated with an Access Id.

HPT This is a Point Handle. When a program accesses a variable in
the InTouch database, it must first convert the variable name
(which is a character string containing the name of any valid
tagname or field) into a handle for efficient use. Each point to be
accessed must have a Point Handle. These handles are used
throughout the program to read and write variables.

PTYPE This is a Point Type. PtAccType returns a value of this type to
indicate the type of InTouch variable. NULL is use to indicate an
invalid or unknown type of point. There are four valid codes for
PTYPE:

 PT_DISCRETE

 PT_INTEGER

 PT_REAL

 PT_STRING

#include "ptacc.h"

ACCID AccId;
HPT SecondsHandle;
PTYPE SecondsType;
long IntSeconds;
float FloatSeconds;
char MsgSeconds[132];

/* The first thing needed is an ACCID. This is provided by
 the function PtAccInit.*/

AccId = PtAccInit(hWnd, 8);

10-6 Chapter 10

/* To be able to access an InTouch variable, one must supply
the variable's name so that it can be converted into a
shorthand reference. This is the HPT. PtAccActivate takes as
parameters an ACCID and a variable name and returns the HPT
(point handle.) All other IDEA functions work with ACCID and
HPT.*/

SecondsHandle = PtAccActivate(AccId, "$Second");

SecondsType = PtAccType(AccId, SecondsHandle);
switch(SecondsType) {
 case PT_DISCRETE:
 /* $Second as a discrete? Doesn't make sense */
 break;
 case PT_INTEGER:
 IntSeconds = PtAccReadI(AccId, SecondsHandle);
 break;
 case PT_REAL:
 RealSeconds = PtAccReadR(AccId, SecondsHandle);
 break;
 case PT_STRING:
 PtAccReadM(AccId, SecondsHandle, MsgSeconds,
 sizeof(MsgSeconds));
 break;
}

 Access ID Handles (ACCID)
 The first step is to create one or more ACCIDs through calls to PtAccInit. This step
is necessary because it allows the IDEA functions to determine whether InTouch is
running on the computer and is accessible. It also makes it possible to run multiple
programs, simultaneously accessing InTouch data. Every other function and each of
the following steps depends on a unique ACCID.

If PtAccInit returns a NULL handle it means that InTouch is not accessible (not
running).

Only one ACCID is required for a program to use InTouch variables. However, it
may be useful to work with more than one ACCID. As described in the next section,
each Point Handle (HPT) you create is connected to an ACCID. This provides a
form of logical grouping of variables.

 Point Handles (HPT)
 The second step to access InTouch data is to set up Point Handles (HPTs) for all of
the InTouch variables that the program must read or write. In setting up Point
Handles, two important things are accomplished. 1) The InTouch variable or field
name is sent to InTouch to be validated, 2) If the name is valid, a handle is
established. The handle makes every access to the variable speedy by eliminating
the need to look up the variable name and validate it each time. Successfully
creating an HPT indicates that the variable is valid. The point must be activated
before it can be read.

IDEA Toolkit 10-7

 Activating Variables
 The InTouch runtime database keeps track of which of its tagnames are in use. A
tagname is considered to be in use when:

l It is used in an animation link for an object in a visible window

l It is trended

l It is alarmed

l It is used in InTouch logic

l It is used in an action script for an object in a visible window

l It has been the object of an Advise request from an I/O client

l It has been activated by a program developed with the IDEA Toolkit

Some InTouch variables originate with other programs in the system. For example,
some come from external equipment through I/O Server programs. Other variables
may come from a wide variety of Windows applications such as Microsoft Excel
spreadsheets. When this type of variable is in use, InTouch requests the originating
program to notify InTouch of every change in its value. When these variables are
not in use, InTouch cancels the request. An IDEA program must activate each
variable to ensure that when it reads a variable, it receives the current value. The
IDEA functions PtAccActivate and PtAccHandleActivate activate variables.

If there are periods during which the program does not need some or all of the
variables, it is good practice to notify InTouch that they are not in use by calling
PtAccHandleDeactivate or PtAccDeactivate. This allows InTouch to notify any
involved I/O servers that these variables are not needed and polling can be
suspended. When these variables are, in fact, needed, they must be activated again
by calling PtAccHandleActivate.

Note PtAccActivate should not be used to reactivate a point because it creates a
new HPT as well as activating it.

 InTouch Variable Types
 The InTouch tagname database contains data of four basic types: discrete, integer,
real (or floating point) and character strings. A discrete tagname has only two
possible values, 0 (off or false) or 1 (on or true.) An integer tagname is a 32-bit
signed number ranging between -2,147,483,648 and +2,147,483,647. Real (floating
point) tagnames are 32-bit IEEE floating point numbers ranging between -3.4e+38
and +3.4e+38. Character string tagnames are null-terminated (C language standard)
ASCII arrays up to 131 8-bit characters in length.

The function PtAccType allows the user to determine the type of a tagname.
Knowing the type, the user can call the appropriate functions to read and write the
tagname. Another pair of function calls, PtAccReadA and PtAccWriteA, can be
used with discrete, integer or real tagnames. The value of the tagname is converted
to double-precision floating point by PtAccReadA and converted from double-
precision floating point to the appropriate type by PtAccWriteA.

Of course, the IDEA program can know ahead of time the type of each variable it
uses. If so, the appropriate read and write functions can be called without checking
PtAccType. If this is the case, it is good practice to verify the type of each variable
when the HPT is created.

10-8 Chapter 10

 Reading InTouch Variables
 After creating an ACCID, creating an HPT for each variable and activating each
HPT, values can be read from InTouch. IDEA has five functions for reading
InTouch data:
Function Description

PtAccReadD Reads an InTouch discrete, integer or real variable
and returns it as a discrete value.

PtAccReadI Reads an InTouch discrete, integer or real variable
and returns it as an integer value.

PtAccReadR Reads an InTouch discrete, integer or real variable
and returns it as a 32-bit IEEE floating point value.

PtAccReadA Reads an InTouch discrete, integer or real variable
and returns it as a 64-bit IEEE floating point value.

PtAccReadM Reads an InTouch string variable.

 Writing InTouch Variables
 After creating an ACCID and an HPT for each variable, values can be written to
InTouch. IDEA has five functions for writing InTouch data:
Function Description

PtAccWriteD Writes a discrete value to InTouch discrete, integer
or real variable.

PtAccWriteI Writes an integer value to an InTouch discrete,
integer or real variable.

PtAccWriteR Writes a 32-bit IEEE floating point value to an
InTouch discrete, integer or real variable.

PtAccWriteA Writes a 64-bit IEEE floating point value an
InTouch discrete, integer or real variable.

PtAccWriteM Writes an InTouch string variable.

 Detecting InTouch Exits
 In most cases, the program must detect when InTouch exits. The function of the
IDEA program may be invalid when InTouch is not running. This can be
accomplished by calling PtAccOK. The recommended use if PtAccOK is to call it
once after each group of variables is read before calculating and writing the results
back to InTouch. This technique is shown in the sample programs.

IDEA Toolkit 10-9

 Storing Program Data with Each HPT
 IDEA programs can store and retrieve a virtually unlimited amount of extra
information associated with each InTouch variable being accessed. For every
variable being accessed, IDEA will allocate storage in the amount requested by the
program. The user specifies the amount of storage needed in the call to PtAccInit.
The functions PtAccSetExtraInt, PtAccSetExtraLong, PtAccGetExtraInt and
PtAccGetExtraLong allow the program to store and retrieve information from that
storage space.

 Conceptually, IDEA maintains information about the ACCIDs and HPTs as follows:

 In this case, when the user created the second ACCID, IDEA was specified to
allocate 8 extra bytes for each HPT. The user can store and retrieve information in
the 8 bytes allocated. It is up to the user to decide how to use the storage area.
Example #3 in the "Program Examples" section of this manual shows how this
feature can be used.

10-10 Chapter 10

 Differences Between 16 and 32-Bit
Compilers
 When using 16-bit compilers, the size of an integer is two bytes and a long is four
bytes. When using a 32-bit compiler, the size of each data type is doubled. Hence,
an integer is four bytes and a long is eight bytes. This is especially important when
you are porting an IDEA application to 32-bit Windows 95/98 or 32-bit Windows
NT. The following table shows the bytes required for each function under different
compilers. Example #5 further clarifies the differences between compilers.

Note Version 7.1 (or later) of the IDEA Toolkit only supports 32-bit Windows
development.

 Bytes Needed

 Function 16-bit Windows 32-bit Windows

PtAccSetExtraInt

PtAccReadExtraInt

 2 4

 PtAccSetExtraLong

 PtAccReadExtraLong

 4 8

IDEA Toolkit 10-11

 Tag Handles and Memory Usage
 This section describes how to best use tag handles so that their implementation does
not cause an unnecessary strain on system resources. Certain implementations of
using the IDEA Toolkit to keep the handles to a large number of tags active can
cause WindowViewer to slow down, and to even lock up. You may see "RDB
Command Not Processed" errors, Assertion errors, and even Access Violation
errors, which can cause WindowViewer to terminate.

Note "RDB Command Not Processed" errors, Assertion errors, and Access
Violation errors are often caused by other problems, such as a corrupted InTouch
application. An IDEA application may not always be at fault.

 A typical IDEA application has a program flow that resembles the following:

// Global variable declarations
ACCID g_accid= NULL;
HPT g_hpt[SomeNumber];
// Some function that is used for application initialization.
void InitializationRoutine()
{
UINT ui= 0;
wwHeap_Register(NULL, &ui);
g_accid= PtAccInit(NULL, 0);
for(int i= 0; i< SomeNumber; i++)
{
g_hpt[i]= PtAccActivate(g_accid, "SomeTagnames");
}
// Some other app initialization here.
}
// Some function that is used for processing data from View.
void DataProcessingRoutine()
{
for(int i= 0; i< SomeNumber; i++)
{
PtAccWriteI(g_accid, g_hpt[i], SomeValue);
}
}
// Some function that is used to clean up tag handles and
InTouch connection.
void ShutdownRoutine()
{
for(int i= 0; i< SomeNumber; i++)
{
PtAccDeactivate(g_accid, g_hpt[i]);
PtAccDelete(g_accid, g_hpt[i]);
}
PtAccShutdown(g_accid);
WwHeap_Unregister();
}

 In some instances, PtAccHandleCreate, PtAccHandleActivate,
PtAccHandleDeactivate, and PtAccHandleDelete may also be used, but the effect is
the same.

 This method of implementation is fine for a small amount of tags. However, it will
not work for a large amount of tags due to memory allocation and access within the
WWHeap.dll. Each time a handle for a tag is created (that is, calling
PtAccActivate, PtAccHandleCreate, and so on), a chunk of memory is allocated
in WWHeap for that handle. The more handles that are created, the more memory is
allocated and the more messages that need to be processed by WWHeap.

10-12 Chapter 10

 At some point, a threshold will be reached where there are not enough system
resources to process the messages and the application will hang or eventually crash.
This threshold is difficult to define. It depends on a number of variables, including
the CPU speed, available memory, number of tag handles requested, and InTouch
application resources that are required (that is, the more scripts, animation, and
open windows it has, the more resources it will need).

 For example, you have an InTouch application with 11,000 Discrete tags that are
being monitored for alarms and it uses a distributed alarm system. If all of the tags
are being updated at the same time (such as in the For Next loop in the sample
script), a problem may result. On the other hand, if an InTouch application is large
(that is, there are hundreds of windows and scripts), then the problem may occur
with as few as 1,000 tags being updated at once.

 The problem is not the result from updating the tags. Instead, it usually occurs when
there is an update to a number of tags and many tags are currently activated within
the IDEA toolkit application. This is because only one process at a time can use
WWHeap. Though many applications can connect to WWHeap and use it,
WWHeap will only perform management functions for one process at a time. One
or more of the following may add to the load encountered by WWHeap, and may
render it useless until it has finished processing its message queue: many handles
that are allocated for large or busy InTouch applications, lots of tag handle updates,
or other InTouch processes, such as running scripts, opening windows, and using
history or alarms.

 The best way to avoid this situation is to keep the handles active only for tags that
are processed frequently during the execution of the IDEA application. If a tag is
only going to be used occasionally, create the handle and then delete it after
processing for that tag is complete, as shown in the following script:

// Global variable declarations
ACCID g_accid= NULL;
HPT g_hpt= NULL;
// Some function that is used for application initialization.
void InitializationRoutine()
{
UINT ui= 0;
wwHeap_Register(NULL, &ui);
g_accid= PtAccInit(NULL, 0);
// Some other app initialization here.
}
// Some function that is used for processing data from View.
void DataProcessingRoutine()
{
for(int i= 0; i< SomeNumber; i++)
{
g_hpt= PtAccActivate(g_accid, "SomeTagnames");
PtAccWriteI(g_accid, g_hpt, SomeValue);
PtAccDeactivate(g_accid, g_hpt);
PtAccDelete(g_accid, g_hpt);
}
}
// Some function that is used to clean up tag handles and
InTouch connection.
void ShutdownRoutine()
{
PtAccShutdown(g_accid);
WwHeap_Unregister();
}

IDEA Toolkit 10-13

 Accessing Remote Tags
 When attempting to read a tag handle (obtained through a remote tag), sufficient
time must be allowed in order for a current value to be obtained before the tag
handle is deactivated and/or deleted. For example, it is common practice to create a
handle, activate it, read it's value, deactivate it, then delete it all within the same
API:

void ProcessTags()

{
HPT hpt= PtAccActivate(accid, "AccessName:Item");
SaveValue(PtAccReadI(accid, hpt));
PtAccDeactivate(accid, hpt);
PtAccDelete(accid, hpt);
}

 If this type of script is executed for a remote tag, it is possible that the current value
will not be retrieved, since the current value may not have been obtained from the
I/O Server before the handle was deleted.

 In order to ensure enough time to retrieve the value, you could insert a delay
between the time that the tag handle is read, and the time it is deactivated/deleted.
You could also create the tag handle and then let it remain active during the entire
life of the application. However, this is not recommended since it has the potential
to slow down WindowViewer.

10-14 Chapter 10

 Program Examples
 The following set of examples is provided to illustrate how the IDEA Toolkit can be
used. The following samples are written in no particular language. Their purpose is
to illustrate the ideas behind the functions and various ways to use the functions.

 In addition, some of the examples provided are complete and working. Sample #2 is
provided for all supported environments: Windows C/C++ and Visual Basic.
Sample #3 is provided for the Windows C/C++ environment. To demonstrate the
working sample programs, we have also included a simple InTouch application.

 Example #1
 In this trivial example, we show an access to the InTouch database which just reads
and displays the value of the message variable $TimeString.

accID = PtAccInit(0, 0);
if accID = 0 then
 { InTouch is not running }
 print "InTouch is not running"
else
 { InTouch is active ... try to activate $TimeString }
 hPtTime = PtAccActivate(accID, "$TimeString");
 if hPtTime <> 0 then
 { InTouch recognizes $TimeString ... read the current
 value }
 PtAccReadM(accID, hPtTime, timeString);

 { Display the current value }
 print "Current time in InTouch is " timeString;
 endif

 { Shut down the connection to InTouch }
 PtAccDeactivate(accID, hPtTime);
 PtAccShutdown(accID);
endif

IDEA Toolkit 10-15

 Example #2
 In this example, we show realistic sample that reads three points and performs a
calculation based on those points whenever InTouch signals the need to do the
calculation. After calculating the result, it is returned to InTouch. When InTouch
wants to do the calculation, it sets the variable DoCalc to TRUE and expects
DoCalc to be set FALSE when the operation is complete. While this example uses a
Boolean variable, DoCalc, to determine when to do the calculation, it could just as
well have performed the calculation every n seconds, or when an analog value
exceeded some limit, or as often as possible.

{ Initialization }

accID = PtAccInit(hWnd (NULL), 0);
if accID = 0 then
 print "InTouch not active"
 stop;
endif

hPtInput1 = PtAccActivate(accID, "Input1"); { real }
hPtInput2 = PtAccActivate(accID, "Input2"); { real }
hPtInput3 = PtAccActivate(accID, "Input3"); { real }
hPtResult = PtAccActivate(accID, "Result"); { real }
hPtDoCalc = PtAccActivate(accID, "DoCalc"); { discrete }

{ check that each of the hPtInput1 ... hPtDoCalc are non-NULL
If PtAccOK() returns FALSE, InTouch has been stopped and we
must shut down}
while(PtAccOK(accID)) do
 if PtAccReadD(accID, hPtDoCalc) = TRUE then
 { InTouch wants us to do the calculation }
 input1 = PtAccReadA(hPtInput1);
 input2 = PtAccReadA(hPtInput2);
 input3 = PtAccReadA(hPtInput3);
 if PtAccOK(accID) then
 { InTouch still running OK, do the calculation }
 result = input1 * input2 * input3;
 { store the result to InTouch }
 PtAccWriteA(accID, hPtResult, result);
 { tell InTouch that we're done}
 PtAccWriteD(accID, hPtDoCalc, FALSE);
 endif
 endif
endwhile
{ shut down the connection to InTouch }
PtAccShutdown(accID)

10-16 Chapter 10

 Example #3
 This is a Windows example that only updates the screen when values change. It
illustrates calls to PtAccHandleCreate, PtAccHandleActivateAndNotify,
PtAccType, PtAccSetExtraInt, PtAccGetExtraInt, and
PtAccACCIDFromHPT. Realize that this is not a trivial example, but for
Windows development, it is important to understand the concepts applied in this
example.

In this example, we assume that the user enters the names of two tagnames that he
wishes to display. We will assume that these tagnames are in an array of structures
called tagInfo[], see the following Declarations code. As an additional feature, if
the user minimizes the program window, we will tell WindowViewer to deactivate
the points, and will reactivate the points when the window is on the screen again.

It's worth reviewing the code that uses PtAccSetExtraInt and PtAccGetExtraInt.
At initialization time, when we call PtAccInit, we tell it to allocate 2 extra bytes of
information for each HPT. As we create handles using PtAccHandleCreate, we
save the index into our array of tagInfo in the extra bytes allocated with HPT, using
PtAccSetExtraInt. When IDEA notifies us of a change using the dbChgMsg
message, it passes the HPT in the lParam of the message. First, we obtain the
corresponding ACCID by a call to PtAccACCIDFromHPT and then obtain the
array index by calling PtAccGetExtraInt. The result of this is that we ask IDEA to
save our index for us so that we don't have to search for HPT in our data structures.
In this example, with only 2 points, it would not have been a problem, but in a large
system, it's easy to see the time savings.

{ Declarations }

struct {
 char ti_tagname[100];
 HPT ti_hPt;
 PTYPE ti_ptType;
 char ti_valueString[132];
} TAGINFO;

TAGINFO tagInfo[2];
ACCID accID;

{ Initialization }

accID = PtAccInit(hWndParent, 2);
{Request 2 extra bytes per hPt}
if accID = 0 then
 print "InTouch not active"
 stop;
endif

{ Register the "DBCHGMSG" defined in ptacc.h with Windows }
dbChgMsg = RegisterWindowMessage(DBCHGMSG);

{ Get the tagnames for the 2 tagInfo structures; Use WIN.INI
for simplicity in this example}
GetProfileString("Sample", "Tag1", tagInfo[0].ti_tagname, ...
 "$TimeString");
GetProfileString("Sample", "Tag2", tagInfo[1].ti_tagname, ...
 "$Second");

IDEA Toolkit 10-17

{ Create handles for the 2 tagnames }
for i=0 to 1 do
 tagInfo[i].ti_hPt = PtAccHandleCreate(accID,
 tagInfo[i].ti_tagname);
 if tagInfo[i].ti_hPt = 0 then
 ErrorMsg("Cannot find tagname", tagInfo[i].ti_tagname
);
 stop
 else
 { remember the point type }
 tagInfo[i].ti_ptType = PtAccType(accID,
 tagInfo[i].ti_hPt);

 {Activate the point [assumes initial window is not
 iconic] }
 PtAccHandleActivateAndNotify(accID, tagInfo[i].ti_hPt
);

 { Remember the index in the "extra" bytes for the
 point }
 PtAccSetExtraInt(accID, tagInfo[i].ti_hPt, 0, i);

 { Get the initial value }
 UpdatePointValue(i); { code shown later }
 endif
endfor

{ Support Routines }

UpdatePointValue(n):
 { This code is called at initialization time to get an
 initial value and is also called each time we're
 notified that the point value has changed }

switch(tagInfo[n].ti_ptType) {
case PT_DISCRETE:
 { Put result of PtAccReadD() into the string
 tagInfo[n].ti_valueString }
 sprintf(tagInfo[n].ti_valueString, "%d",
 PtAccReadD(accID, tagInfo[n].ti_hPt));
 break;
case PT_INTEGER:
 { Put result of PtAccReadI() into the string
 tagInfo[n].ti_valueString }
 sprintf(tagInfo[n].ti_valueString, "%ld",
 PtAccReadI(accID, tagInfo[n].ti_hPt));
 break;
case PT_REAL:
 { Put result of PtAccReadR() into the string
 tagInfo[n].ti_valueString }
 sprintf(tagInfo[n].ti_valueString, "%f",
 PtAccReadR(accID, tagInfo[n].ti_hPt));
 break;
case PT_STRING:
 { Put result of PtAccReadM() into the string
 tagInfo[n].ti_valueString }
 PtAccReadM(accID, tagInfo[n].ti_hPt,
 tagInfo[n].ti_valueString, 132);
 break;
endswitch

RepaintScreen(); { code shown later }

RepaintScreen():
for i=0 to 1 do
 ShowText(line #i, tagInfo[i].ti_valueString);
endfor

10-18 Chapter 10

{ Windows Message Processing }

WM_PAINT message:
 RepaintScreen();

dbChgMsg message:
 { lParam of the dbChgMsg contains the hPt that was changed
}
 hPt = lParam;

 { Ask IDEA for the accID that corresponds to this hPt }
 accID = PtAccACCIDFromHPT(hPt);

 { Now that we have the accID and hPt, we need to know the
 index into our array of points. We could search our
 tagInfo[] array. However, when we initialized, we
 asked IDEA to remember the index in each hPt by
 calling PtAccSetExtraInt(). Now, by calling
 PtAccGetExtraInt() we can retrieve the index without
 any lookup}
 n = PtAccGetExtraInt(accID, hPt, 0);

 { Update the value and the screen }
 UpdatePointValue(n);

WM_SIZE message:
if wParam is SIZENORMAL or SIZEFULLSCREEN and the windows is
 ICONIC then
 { User is looking at screen again ... activate all the
 points}
 for i=0 to 1 do
 PtAccHandleActivateAndNotify(accID, tagInfo[i].ti_hPt
);
 endfor
endif

if wParam is SIZEICONIC then
 { User is not looking at our points ... deactivate all
 the points }
 for i=0 to 1 do
 PtAccHandleDeactivate(accID, tagInfo[i].ti_hPt);
 endfor
endif

IDEA Toolkit 10-19

 Example #4
 For C++ programmers there is a class titled CIdea that encapsulates programming in
the IDEA Toolkit. It is the core of implementation for the ITEdit.OCX. An example
application highlighting its correct usage is found in the CIDEAAPP sample. This
sample application is the equivalent of WINSIMPL functionally, but is implemented
via the CIdea C++ class.

 Example #5
 Example #5 shows a test sample using one integer and one long under 32-bit.

// test sample using one int and one long under 32-bit
// initialize (need 4 bytes for the int and 8 for
// the long)
AccID = PtAccInit(hWnd, 4+8); // sizeof(int) +

sizeof(long)
// register a tag
hPt = PtAccActivate(AccID, "TestTag");
// write 15 to the extra int (first data offset 0)
PtAccSetExtraInt(AccID, hPt, 0, 0xf);
// write 15 to the extra long (make room for the int)
PtAccSetExtraLong(AccID, hPt, 4, 0xf);

10-20 Chapter 10

 IDEA Programs in the Windows NT
Environment

Writing IDEA programs for 32-bit Windows is the same as writing IDEA programs
for 16-bit Windows with the following exception: IDEA (PTACC.DLL) uses the
Wonderware heap management facility (wwHEAP). If you are writing a standalone
application that uses the IDEA interface, before calling PtAccInit, you must
register your application with the Wonderware heap manager using the
wwHeap_Register function. You must also unregister your program before it exits
using the wwHeap_Unregister function. The function prototypes are:

// call at the beginning of the C or C++ program
// before any other calls are made to PtAcc
#ifdef_DEBUG
wwHeap_RegisterEx(hWnd, pwMsgNotify,_FILE_,_LINE_);
#else
wwHeap_Register(hWnd, pwMsgNotify);
#endif
// All your other InTouch and PtAcc code goes here…

// Call at the end of the C or C++ program
#ifdef_DEBUG
wwHeap_UnregisterEx(_FILE_,_LINE_);
#else
wwHeap_Unregister();
#endif

 Function prototypes:
BOOL WINAPI wwHeap_Register(HWND hWnd, UINT *wMsgNotify);
BOOL WINAPI wwHeap_Unregister();
BOOL WINAPI wwHeap_RegisterEx(HWND hWnd, UINT *wMsgNotify,
 LPCTSTR szFile, int iLine);
BOOL WINAPI wwHeap_UnregisterEx(LPCTSTR szFile, int iLine);

 The function prototypes are defined in #include wwheap.h. All 32-bit IDEA
Samples use the wwHeap_Register and wwHeap_Unregister functions.

Note If you are using IDEA in an InTouch Script or Wizard DLL, it is not
necessary to use the wwHeap_Register and wwHeap_Unregister functions.

Note Under 32-bit Windows, DLLs cannot reside in multiple places on the hard
disk. You must provide a search path to the InTouch directory so your IDEA
application can locate it. If a duplicate PTACC.DLL or WWHEAP.DLL resides on
your system, 32-bit Windows will attempt to create another instance of this DLL
and your IDEA application will generate Assertion Errors in WWHEAP.

IDEA Toolkit 10-21

 InTouch Notification of Tag Changes
 The following example scenario shows the difference between the
PtAccActivateAndNotify, PtAccHandleActivateAndNotify and
PtAccActivateAndSendNotify PtAccHandleActivateAndSndNotify functions
and how they affect InTouch performance.

 PtAccActivateAndNotify and
PtAccHandleActivateAndNotify

 These functions cause InTouch to send notification via PostMessage. InTouch will
continue to post messages into your IDEA application's window message queue
until it exits it's message loop (releases the system processor). You may receive
multiple notifications before gaining control of the processor to handle them.

 Example:

 InTouch user clicks a button assigned directly to a discrete tagname:

 InTouch enters message loop

 Tag goes High (1) and then Low (0)

 InTouch posts notifications of both changes to IDEA Application

 InTouch exits message loop

 IDEA App enters message loop

 IDEA App processes first notification and reads value, it will get 0

 IDEA App exits message loop

 IDEA App enters message loop

 IDEA App processes second notification and reads value, it will get 0

 IDEA App exits message loop

This occurs because InTouch has updated the tagname before the IDEA application
can read the value. If the values contained in the tags remain static until the IDEA
app processes them, then this is a good function to use. If your IDEA application
requires real-time update of data, use the function PtAccActivateAndSendNotify
or PtAccHandleActivateAndSndNotify.

10-22 Chapter 10

 PtAccActivateAndSendNotify and
PtAccHandleActivateAndSndNotify

 These functions cause InTouch to send notification via the Windows API
SendMessage function. InTouch will post a message at the beginning of your IDEA
application's window message queue and then wait the IDEA application processes
the message. Once this happens, your application will have full control of the
processor until you exit your message loop. The example scenario describes this in
further detail.
 Example:

 InTouch user clicks a button assigned directly to a discrete tagname.

 InTouch enters message loop

 Tag goes High (1)

 InTouch posts notification of change to IDEA App

 InTouch goes to sleep

 IDEA App enters message loop

 IDEA App processes notification and reads value, it will get 1

 IDEA App exits message loop

 InTouch wakes up

 Tag goes Low (0)

 InTouch posts notification of change to IDEA App

 InTouch goes to sleep

 IDEA App enters message loop

 IDEA App processes notification and reads value, it will get 0

 IDEA App exits message loop

 InTouch wakes up

 InTouch exits message loop

InTouch gives the IDEA application control after notification, then you are ensured
that the value read from the tagname is the value you received.
Anything requiring a long time-slice (large table look-ups, database request waits,
file I/O, and so on), should not be done during this cycle. This will cause erratic
performance of InTouch (waiting for your application to exit its message loop). If
you must perform these types of functions, post a USER message or registered
windows message into your IDEA application's message queue (PostMessage) as a
response to the InTouch notification and perform this operation when your
application's private message has been received.

IDEA Toolkit 10-23

Note The use of these functions with tags that change frequently could cause your
application's buffer to overflow. If this occurs, a message will be posted in the
Wonderware Logger each time the event occurs. It is possible to increase your
application's buffer to 120 using the following code segment placed in your
WinMain function:

{
 int MsgQuesize = 120;

 while(MsgQueSize && !SetMessageQueue(MsgQueSize))
 MsgQueSize -= 8;
 If(!MsgQueSize) return(FALSE);
}

If the overflow error still occurs, set an alarm state and using the <MYTAG>.Alarm
field.

 Use of Environment Variables
 Compilers and most software development tools are able to use environment
variables to find the files that are needed. When installing the toolkit, keep the
following in mind:
PATH This environment variable is used by Windows NT to locate

executable files (programs) when the file is not found in the
current working directory. The PATH variable contains a
sequence of directories to search. Your PATH should contain
both the Windows NT directory and the InTouch directory
(usually C:\INTOUCH.) Throughout this section, executable
files will be copied to the C:\INTOUCH directory. If you wish
to use a different directory, you must be certain that the
directory is in your PATH.

INCLUDE This environment variable is used by most compilers and
assemblers to locate files accessed through INCLUDE
directives. Throughout this section, INCLUDE files will be
copied to C:\INCLUDE. If you wish to use a different
directory, be sure it is named in the INCLUDE environment
variable.

For example, in AUTOEXEC.BAT:

SET INCLUDE=C:\INCLUDE

LIB The object code linker uses the LIB environment variable to
locate object code libraries that are not found in the current
working directory on the default disk drive. Throughout this
section, library files will be copied to C:\LIB. If you wish to
use a different directory, be sure it is named in the LIB
environment variable. For example, in AUTOEXEC.BAT:

SET LIB=C:\LIB

To proceed with installation, skip to the sections that address your target
environment.

10-24 Chapter 10

 Installing for Microsoft C in a Windows NT
Environment

 Requirements
l Microsoft Visual C++ 6.0 Service Pack 3

l Microsoft Windows Platform SDK

l Microsoft Windows NT

l Wonderware InTouch 7.1 (or later)

l Pentium machines supported

 Support
 Windows NT for the Intel Platforms is supported

 Files Required for Development
 PTACC.LIB must be in LIB path (for example, C:\LIB)

 PTACC.H must be in INCLUDE path (for example, C:\INCLUDE)

 Samples
 \SAMPLES\WINSIMPL Sample #2

 \SAMPLES\WINCMPLX Sample #3

\SAMPLES\CIDEAAPP Sample #4

Microsoft Visual C++ MFC CIdea C++ sample which functions the same as Sample
#2. The paths in the INCLUDE (C:\INTOUCH\SCRIPT\INC) and LIBRARY
(C:\INTOUCH\SCRIPT\LIB) environment variables must be set before being built.
Once done, all dependencies must be regenerated (both release and debug). After
building the application, it must be copied to the InTouch directory to run correctly.

IDEA Toolkit 10-25

 Running IDEA Toolkit Samples
 Before proceeding with the samples, ensure that you have installed InTouch 7.1 or
later and have installed the IDEA Toolkit.

 Step 1
 For any of the samples delivered on the IDEA Toolkit, you must run InTouch
WindowViewer with the application supplied. Run View using this application
before starting any of the samples.

 Windows C 32-bit Simple Sample
(\IDEA\SAMPLES\WINSIMPL)
 To run this sample, simply run \IDEA\EXE\WINSIMPL.EXE after completing Step
1. Position the sample on the left side of your screen. Now, in InTouch, press the
button labeled "Do Calculation". This button sets the InTouch variable DoCalc,
which the sample notices, performs the calculation, and InTouch updates the screen
with the result generated by WINSIMPL.EXE. Experiment with the sample source
code, rebuild the sample and re-test. For example, change the formula to multiply
the 3 inputs then multiply by 2 and see if the results in InTouch correspond.

 Windows C 32-bit Complex Sample
(\IDEA\SAMPLES\WINCMPLX)
 To run this sample, simply run \IDEA\EXE\WINCMPLX.EXE after completing
Step 1. Position the sample on the left side of your screen. You should see the
current value of $TimeString and $Second displayed on the screen.

 Windows C++ 32-bit Simple Sample
(\IDEA\SAMPLES\CIDEAAPP)
 To run this sample, simply run \IDEA\EXE\CIDEAAPP.EXE after completing Step
1. Position the sample on the left side of your screen. Now, in InTouch, press the
button labeled "Do Calculation". This button sets the InTouch variable DoCalc,
which the sample notices, performs the calculation, and InTouch updates the screen
with the result generated by CIDEAAPP.EXE. Experiment with the sample source
code, rebuild the sample and re-test. For example, change the formula to multiply
the 3 inputs then multiply by 2 and see if the results in InTouch correspond.

To run this sample, copy \IDEA\EXE\CIDEAAPP.EXE to the InTouch directory. It
can be run after completing Step 1.

 Running Windows NT Samples
 To run the NT samples, make sure it's in your InTouch directory or InTouch is in
your PATH.

 Visual Basic 6.0 32-Bit Sample
(IDEA\SAMPLES\VBSIMPLE\VB6)
 To run this sample, you must first run InTouch. Select the "\… \VB6ITAPP"
application and click the WindowViewer Icon. Run the IDEA\EXE\VB5APP.EXE.
The sample gives you the capability to read and write values to and from
WindowViewer. To update values in Visual Basic, Click Update/Read All from the
Visual Basic application menu.

10-26 Chapter 10

 Function Reference
 This section contains a description of each function in the InTouch Database
External Access (IDEA) Toolkit. The parameters passed to each function and the
returned value are described.

 Function Summary
 Initialization Functions
 ACCID PtAccInit(hWnd, nExtraBytes)

 HPT PtAccActivate(accID, Name)

 HPT PtAccHandleCreate(accID, Name)

 int PtAccHandleActivate(accID, hPt)

 PTYPE PtAccType(accID, hPt)

 HPT PtAccActivateAndNotify(accID, Name)

 HPT PtAccActivateAndSendNotify(accID, Name)

 HPT PtAccHandleActivateAndNotify(accID, hPt)

 HPT PtAccHandleActivateAndSndNotify(accID, hPt)

 Data Read Functions
 int PtAccReadD(accID, hPt)

 long PtAccReadI(accID, hPt)

 float PtAccReadR(accID, hPt)

 double PtAccReadA(accID, hPt)

 void PtAccReadM(accID, hPt, StringBuffer, StringBufferLength)

 Data Write Functions
 int PtAccWriteD(accID, hPt, value)

 int PtAccWriteI(accID, hPt, value)

 int PtAccWriteR(accID, hPt, value)

 int PtAccWriteA(accID, hPt, value)

 int PtAccWriteM(accID, hPt, value)

IDEA Toolkit 10-27

 Shutdown Functions
 int PtAccDeactivate(accID, hPt)

 int PtAccDelete(accID, hPt)

 int PtAccHandleDeactivate(accID, hPt)

 int PtAccHandleDelete(accID, hPt)

 int PtAccShutdown(accID)

 void PtAccShutdownAllAssociated(hWnd)

 Miscellaneous Functions
 int PtAccOK(accID)

 int PtAccSetExtraInt(accID, hPt, offset, value)

 int PtAccGetExtraInt(accID, hPt, offset)

 long PtAccSetExtraLong(accID, hPt, offset, value)

 long PtAccGetExtraLong(accID, hPt, offset)

 ACCID PtAccACCIDFromHPT(hPt)

10-28 Chapter 10

 PtAccACCIDFromHPT
ACCID

PtAccACCIDFromHPT(HPT hPt)

Description This function returns the Access Id for a given Point Handle. This is useful when
processing DbChgMsg messages. The DbChgMsg message provides the HPT of the
variable that changed. You must have the ACCID before you can call any of the
PtAccRead functions.
Parameter Description

hPt This is the Point Handle created by a call to
PtAccHandleCreate or PtAccActivate that
identifies a variable that is temporarily not needed.

Returned Value The returned value is an Access Id (of type ACCID) that was used when the hPt was
created.

Example HPT hPtSeconds;
double SecondsValue;

if(message == dbChgMsg) {

 /* Notification of point change... */
 /* lParam has the HPT of the variable that changed. */

 hPtSeconds = (HPT)lParam;
 accID = PtAccACCIDFromHPT(hPtSeconds);
 SecondsValue = PtAccReadA(accID, hPtSeconds);

} else switch(message) {
 /* Usual Windows message processing here */
}

IDEA Toolkit 10-29

 PtAccActivate
HPT

PtAccActivate(ACCID accID,

LPSTR lpszName)

Description PtAccActivate performs two functions that must be done before it is possible to
access a variable in InTouch. It converts the variable's name to a handle that allows
faster access, and it notifies InTouch to activate the variable. This ensures that
InTouch has the up-to-date value of the variable.
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit.

lpszName This is the variable name (tagname or field name)
that will be accessed. The name must be a far
pointer to a null-terminated ASCII string.

Return Value The returned value is a handle of the type HPT that can be used in subsequent
function calls to read or write the tagname named by lpszName. A NULL returned
value indicates a failure; probably the lpszName is not known to InTouch.

Comments PtAccActivate function is equivalent to a call to PtAccHandleCreate and
PtAccHandleActivate. When activating and deactivating points,
PtAccHandleActivate and PtAccHandleDeactivate should be used.
PtAccActivate creates a point handle each time, which is unnecessary.

Note If a program makes multiple calls to PtAccActivate for the same variable
name, multiple independent HPTs will be created.

Example HPT hPtSeconds;

hPtSeconds = PtAccActivate(accID, "$Second"));
if(hPtSeconds != NULL) {
 /* $Second can be read/written using accID and hPtSeconds */
}

10-30 Chapter 10

 PtAccActivateAndNotify
Note This function is not available in Visual Basic.

HPT

PtAccActivateAndNotify(ACCID accID,
LPSTR lpszName)

Description This function is similar to PtAccActivate. In addition to creating a Point Handle and
activating it, it requests the runtime database to post (using PostMessage) a
dbChgMsg message to the window whose handle was used in the PtAccInit() call
that created the accID when the value changed. This function is not available to
Visual Basic applications.
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit. The window whose
handle was used in the call to PtAccInit will
receive the change notification messages.

lpszTagname This is the variable name (tagname or field name)
that will be accessed. The name must be a far
pointer to a null-terminated ASCII string.

Return Value The returned value is a handle of the type HPT that can be used in subsequent
function calls to read or write the tagname named by lpszName. A NULL returned
value indicates a failure; probably the lpszName is not known to InTouch.

Comments For a description of point activation, see "Functional Description" earlier in this
chapter.

Note A program that is using this feature must register the DBCHGMSG message
with Windows and must check for this message in the main message processing
loop. Example #3 shows how this is done.

Example HPT hPtSeconds;
hPtSeconds = PtAccActivateAndNotify(accID, "$Second"));
if(hPtSeconds != NULL) {
 /* $Second can be read/written using accID and hPtSeconds */
}

IDEA Toolkit 10-31

 PtAccActivateAndSendNotify
Note This function is not available in Visual Basic.

HPT

PtAccActivateAndSendNotify(ACCID accID,
LPSTR lpszName)

Description This function is similar to PtAccActivate. In addition to creating a Point Handle
and activating it, it requests the runtime database to send (using SendMessage) a
dbChgMsg message to the window whose handle was used in the PtAccInit() call
that created the accID when the value changed. This function is not available to
Visual Basic applications.
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit. The window whose
handle was used in the call to PtAccInit will
receive the change notification messages.

lpszName This is the variable name (tagname or field name)
that will be accessed. The name must be a far
pointer to a null-terminated ASCII string.

Return Value The returned value is a handle of the type HPT that can be used in subsequent
function calls to read or write the tagname named by lpszName.

Comments For a description of point activation, see "Functional Description" earlier in this
chapter.

Note A program that is using this feature must register the DBCHGMSG message
with Windows and must check for this message in the main message processing
loop. Example #3 shows how this is done.

Example HPT hPtSeconds;

hPtSeconds = PtAccActivateAndSendNotify(accID, "$Second"));
if(hPtSeconds != NULL) {
 /* $Second can be read/written using accID and hPtSeconds */
}

10-32 Chapter 10

 PtAccDeactivate
int

PtAccDeactivate(ACCID accID,
HPT hPt)

Description PtAccDeactivate notifies InTouch that a variable is no longer needed. This makes it
possible to stop polling an item that originates in a I/O server program. The Point
Handle remains valid and can later be activated by a call to PtAccHandleActivate.
While a Point Handle is in the deactivated state, the program should not read its
value, as the returned value may not be current.
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit.

hPt This is the Point Handle created by a call to
PtAccHandleCreate or PtAccActivate that
identifies a variable that is temporarily not needed.

Return Value The returned value is 1 if successful or 0 if the function failed.

Example if(PtAccDeactivate(accID, hPtSeconds)) {
/* hPtSeconds not "in use", not being polled */
} else {
 /* Error, accID or hPtSeconds is invalid */
}

 PtAccDelete
int

PtAccDelete(ACCID accID,
HPT hPt)

Description PtAccDelete deletes a Point Handle. After calling PtAccDelete the Point Handle
must not be used. If the point was activated, it must be deactivated by an explicit
call to PtAccDeactivate before PtAccDelete is called.
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit.

hPt This is the Point Handle created by a call to
PtAccHandleCreate or PtAccActivate that
identifies a variable that is no longer needed.

Return Value The returned value is 1 if successful or 0 if the function failed.

Example if(PtAccDelete(accID, hPtSeconds)) {
 hPtSeconds = NULL;
 /* hPtSeconds deleted */
} else {
 /* Error, accID or hPtSeconds is invalid */
}

IDEA Toolkit 10-33

 PtAccGetExtraInt
int

PtAccGetExtraInt(ACCID accID,
HPT hPt,
int nOffset)

Description PtAccGetExtraInt retrieves a value from a 4-byte (32-bit) field at the specified
offset within the extra storage area allocated for the specified HPT. If this feature is
to be used, IDEA must have been told to allocate extra storage for each HPT. This
is done with the nExtraBytes argument specified in the call to PtAccInit that
created the ACCID.
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit.

hPt This is the Point Handle created by a call to
PtAccHandleCreate or PtAccActivate that
identifies the variable whose extra storage area is to
be retrieved.

nOffset The offset in the extra storage area from which the
4-byte value is to be retrieved. The offset must be
between 0 and the size of the area minus 4 (32-bit).
The size of the area is determined by the
nExtraBytes argument to PtAccInit.

Return Value The returned value is the integer data that was stored in the two bytes of extra
storage area at the offset specified by nOffset.

Example ACCID accID;
HPT hPtTag;
int ValueFromOffset12;

accID = PtAccInit(hWnd, sizeof(int));
hPtTag = PtAccActivate(accID, "VariableName");
PtAccSetExtraInt(accID, hPtTag, 0, DataToSave);

/* later I can retrieve the DataToSave */
ValueFromOffset12 = PtAccGetExtraInt(accID, hPtTag, 12);

10-34 Chapter 10

 PtAccGetExtraLong
long

PtAccGetExtraLong(ACCID accID,
HPT hPt,
int nOffset,
long lValue)

Description PtAccGetExtraLong retrieves a value from an 8-byte (32-bit) field at the specified
offset within the extra storage area allocated for the specified HPT. If this feature is
to be used, IDEA must have been told to allocate extra storage for each HPT. This
is done with the nExtraBytes argument specified in the call to PtAccInit that created
the ACCID.
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit.

hPt This is the Point Handle created by a call to
PtAccHandleCreate or PtAccActivate that
identifies the variable whose extra storage area is to
be retrieved.

nOffset The offset in the extra storage area from which the
8-byte value is to be retrieved. The offset must be
between 0 and the size of the area minus 8 (32-bit).
The size of the area is determined by the
nExtraBytes argument to PtAccInit.

lValue This is the new 4-byte value to be stored.

Return Value The returned value is the long integer data that was stored in the four bytes of extra
storage area at the offset specified by nOffset.

Example ACCID accID;
HPT hPtTag;
long ValueFromOffset0;

accID = PtAccInit(hWnd, sizeof(long));
hPtTag = PtAccActivate(accID, "VariableName");
PtAccSetExtraLong(accID, hPtTag, 0, LongDataToSave);

/* later I can retrieve the LongDataToSave */
ValueFromOffset0 = PtAccGetExtraLong(accID, hPtTag, 0);

IDEA Toolkit 10-35

 PtAccHandleActivate
int

PtAccHandleActivate(ACCID accID,
HPT hPt)

Description This function requests InTouch to activate the variable associated with the Point
Handle. This causes InTouch to consider the point to be in use so that its current
value will be available.
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit.

hPt This is the Point Handle created by a call to
PtAccHandleCreate or PtAccActivate that
identifies a variable that will be used.

Return Value The returned value is 1 if successful or 0 if the function failed.

Example hPtSeconds = PtAccHandleCreate(accID, "$Second");
if((hPtSeconds != NULL) &&
 PtAccHandleActivate(accID, hPtSeconds)) {
 /* $Second can be read/written using accID and hPtSeconds */
}

10-36 Chapter 10

 PtAccHandleActivateAndNotify
Note This function is not available in Visual Basic.

int

PtAccHandleActivateAndNotify(ACCID accID,
HPT hPt)

Description This function is similar to PtAccHandleActivate. In addition to activating a Point
Handle, it requests the runtime database to post (using PostMessage) a dbChgMsg
message to the window whose handle was used in the PtAccInit() call that created
the accID when the value changed. This function is not available to Visual Basic
applications.
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit. The window whose
handle was used in the call to PtAccInit will
receive the change notification messages.

hPt This is the Point Handle created by a call to
PtAccHandleCreate or PtAccActivate that
identifies a variable that will be used.

Return Value The returned value is 1 if successful or 0 if the function failed. If this call fails in a
Windows Environment, make sure that the hWnd parameter on the PtAccInit is
correct.

Comments For a description of point activation, see "Functional Description" earlier in this
chapter.

Note A program that is using this feature must register the DBCHGMSG message
with Windows and must check for this message in the main message processing
loop. Example #3 (described earlier in this chapter) shows how this is done.

Example HPT hPtSeconds;

hPtSeconds = PtAccHandleCreate(accID, "$Second"));
if(hPtSeconds != NULL) {

 /* $Second can be read/written using accID and hPtSeconds
*/

 PtAccHandleActivateAndNotify(accID, hPtSeconds);

 /* Now, when $Second changes, InTouch will send a message
*/
 /* Refer to Example #3 for more detail.
*/
}

IDEA Toolkit 10-37

 PtAccHandleActivateAndSndNotify
Note This function is not available in Visual Basic.

int

PtAccHandleActivateAndSndNotify(ACCID accID,
HPT hPt)

Description This function is similar to PtAccHandleActivate. In addition to activating a Point
Handle, it requests the runtime database to send (using SendMessage) a dbChgMsg
message to the window whose handle was used in the PtAccInit() call that created
the accID. This function is not available to Visual Basic applications.
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit. The window whose
handle was used in the call to PtAccInit will
receive the change notification messages.

hPt This is the Point Handle created by a call to
PtAccHandleCreate or PtAccActivate that
identifies a variable that will be used.

Return Value The returned value is 1 if successful or 0 if the function failed. If this call fails in a
Windows Environment, make sure that the hWnd parameter on the PtAccInit is
correct.

Comments For a description of point activation, see "Functional Description" earlier in this
chapter.

Note A program that is using this feature must register the DBCHGMSG message
with Windows and must check for this message in the main message processing
loop. Example #3 (described earlier in this chapter) shows how this is done.

Example HPT hPtSeconds;

hPtSeconds = PtAccHandleCreate(accID, "$Second"));
if(hPtSeconds != NULL) {

 /* $Second can be read/written using accID and hPtSeconds
*/
 PtAccHandleActivateAndSndNotify(accID, hPtSeconds);

 /* Now, when $Second changes, InTouch will send a message
*/
 /* Refer to Example #3 for more detail.
*/
}

10-38 Chapter 10

 PtAccHandleCreate
HPT

PtAccHandleCreate(ACCID accID,
LPSTR lpszName)

Description Before a tagname (variable) from the InTouch database can be read or written, the
program must call PtAccHandleCreate or PtAccActivate specifying the name of
the variable so that it can be verified and a Point Handle (HPT) can be set up. Once
the Point Handle is set up, reads and writes of the variable can be done very quickly
because the lengthy name comparisons are no longer needed.
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit.

lpszName This is the variable name (tagname or field name)
that will be accessed. The name must be a far
pointer to a null-terminated ASCII string.

Return Value The returned value is a handle of the type HPT that can be used in subsequent
function calls to read or write the tagname named by lpszName. A NULL returned
value indicates a failure; probably the lpszName is not known to InTouch.

Example ACCID accID;
HPT hPtSeconds;

hPtSeconds = PtAccHandleCreate(accID, "$Second"));
if(hPtSeconds != NULL) {
 if(PtAccHandleActivate(accID, hPtSeconds)) {
 /* $Second can be read/written using accID and hPtSeconds
*/
 }
}

IDEA Toolkit 10-39

 PtAccHandleDeactivate
int

PtAccHandleDeactivate(ACCID accID,
HPT hPt)

Description This function is equivalent to a call to PtAccDeactivate. It causes InTouch to
consider the variable to be not in use. The Point Handle remains valid and can later
be activated by a call to PtAccHandleActivate. While a Point Handle is in the
deactivated state, the program should not read its value. The returned value may not
be current.
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit.

hPt This is the Point Handle created by a call to
PtAccHandleCreate or PtAccActivate that
identifies a variable that is temporarily not needed.

Return Value The returned value is 1 if successful or 0 if the function failed.

Example if(PtAccHandleDeactivate(accID, hPtSeconds)) {
 /* hPtSeconds not "in use", not being polled */
}else {
 /* Error, accID or hPtSeconds is invalid */
}

 PtAccHandleDelete
int

PtAccHandleDelete(ACCID accID,
HPT hPt)

Description This function is equivalent to a call to PtAccDelete. It deletes a Point Handle. After
calling PtAccHandleDelete the Point Handle must not be used. If the point was
activated, it must be deactivated by an explicit call to PtAccHandleDeactivate
before PtAccHandleDelete is called.
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit.

hPt This is the Point Handle created by a call to
PtAccHandleCreate or PtAccActivate that
identifies a variable that is no longer needed.

Return Value The returned value is 1 if successful or 0 if the function failed.

Example if(PtAccHandleDelete(accID, hPtSeconds)) {
 hPtSeconds = NULL;
 /* hPtSeconds deleted */
}else {
 /* Error, accID or hPtSeconds is invalid */
}

10-40 Chapter 10

 PtAccInit
ACCID

PtAccInit(HWND hWnd,
int nExtraBytes)

Description The first step required to access information from the InTouch runtime database is
to call PtAccInit. It verifies that the InTouch runtime database is accessible and
prepares for the other InTouch access functions that will be called. If PtAccInit
returns a NULL handle, it indicates that InTouch is not running. The program may
repeat the call until a non-NULL return value is received which indicates that
InTouch has become ready.
Parameter Description

hWnd In a Windows program, this is the window handle of
the window that will receive notifications of value
changes for data items. Typically, this will be the
program's parent window. It may be NULL if
change notifications are not needed.

In a Windows program, if this argument is NULL or
0, then no error will occur until the
PtAccHandleActivateAndNotify.

nExtraBytes A program may specify that some extra storage be
allocated for each data item that is being accessed.
If nExtraBytes is non-zero, it indicates the number
of bytes of extra storage to be allocated for each
data item. The storage is allocated when
PtAccHandleCreate or PtAccActivate is called
and the extra storage is associated with the Point
Handle returned. The storage area can be accessed
by PtAccSetExtraInt, PtAccSetExtraLong,
PtAccGetExtraInt and PtAccGetExtraLong.

Return Value The return value is an Access Id handle (of type ACCID) that identifies a
connection to the InTouch runtime database. It must be saved and passed to other
functions that access the database. If NULL is returned, it indicates that InTouch is
not available.

Example #include "ptacc.h"

ACCID accID;
extern HWND hWndMain;
do {
 accID = PtAccInit(hWndMain, 8);
 /* 8 bytes extra storage */

} while(accID == NULL);

IDEA Toolkit 10-41

 PtAccOK
int

PtAccOK(ACCID accID)

Description After reading all of the tagnames to be used in a computation, the program should
call PtAccOK to ensure that InTouch is still accessible and the tagname values that
were read are valid. If PtAccOK returns FALSE, it indicates that InTouch has been
shut down. Values read should not be used and the program should call
PtAccShutdown for each ACCID handle that was created by calls to PtAccInit.
After that, the program can wait for InTouch to be restarted by periodically calling
PtAccInit until a non-NULL value is returned.
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit.

Return Value The returned value is 1 if InTouch is still accessible and the tagnames read since the
last call are valid. The return value is 0 otherwise.

Example ACCID accID;

if(!PtAccOK(accID)) {
 PtAccShutdown(accID);
 accID = NULL;
 /*Need to go back and wait for PtAccInit to return non-
NULL
 */
}

 PtAccReadA
double

PtAccReadA(ACCID accID,
HPT hPt)

Description PtAccReadA returns the current value of an InTouch discrete, integer or floating
point variable.
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit.

hPt This is the Point Handle created by a call to
PtAccHandleCreate or PtAccActivate that
identifies the variable whose value to return.

Return Value The returned value is the value of the variable. A variable of discrete, integer or
floating point type is converted to a 64-bit IEEE floating point number. Discretes
are represented by 1.0 or 0.0.

Example double TagValue;
HPT hPtTag;

hPtTag = PtAccActivate
 (accID, "DiscreteIntegerOrRealTagName");
if(hPtTag != NULL) {
 TagValue = PtAccReadA(accID, hPtTag);
}

10-42 Chapter 10

 PtAccReadD
int

PtAccReadD(ACCID accID,
HPT hPt)

Description PtAccReadD returns the current value of an InTouch discrete variable.
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit.

hPt This is the Point Handle created by a call to
PtAccHandleCreate or PtAccActivate that
identifies the variable whose value to return.

Return Value The returned value is 1 if the discrete variable is ON, 0 if the discrete variable is
OFF.

Comments If the type of the variable (hPt) being read is other than discrete, it will be converted
to a discrete value as follows:
Integer If variable is 0, the result is 0. Otherwise the result is 1.

Real If variable is 0.0, the result is 0. Otherwise the result is 1.

String This is an error condition, the returned value is always 0.

Example int TagValue;
HPT hPtTag;

hPtTag = PtAccActivate(accID, "DiscreteTagName");
if(hPtTag != NULL) {
 TagValue = PtAccReadD(accID, hPtTag);
}

IDEA Toolkit 10-43

 PtAccReadI
long

PtAccReadI(ACCID accID,
HPT hPt)

Description PtAccReadI returns the current value of an InTouch integer variable.
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit.

hPt This is the Point Handle created by a call to
PtAccHandleCreate or PtAccActivate that
identifies the variable whose value to return.

Return Value The returned value is the value of the variable. It is a 32-bit signed integer.

Comments If the type of the variable (hPt) being read is other than integer, it will be converted
to an integer value as follows:
Discrete If variable is off or 0, the result is 0. Otherwise the result is 1.

Real If variable is less than -2,147,483,648 the result is -2,147,483,648. If
variable is greater than +2,147,483,647, the result is +2,147,483,647.
Otherwise the result is the nearest integer value to the floating point
value.

String This is an error condition, the returned value is always the maximum
long integer value (2,147,483,647.)

Example long TagValue;
HPT hPtTag;

hPtTag = PtAccActivate(accID, "IntegerTagName");
if(hPtTag != NULL) {
 TagValue = PtAccReadI(accID, hPtTag);
}

10-44 Chapter 10

 PtAccReadM
void

PtAccReadM(ACCID accID,
HPT hPt,
LPSTR lpszVal
int nMax)

Description PtAccReadM returns the current value of an InTouch string variable.
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit.

hPt This is the Point Handle created by a call to
PtAccHandleCreate or PtAccActivate that
identifies the variable whose value to return.

lpszVal A far pointer to a the string buffer where the
variable's current value is to be returned. This buffer
must be at least 132 bytes in length to accommodate
the maximum length InTouch string.

nMax The length of the string buffer lpszVal. If the
InTouch string is longer than nMax, it will be
truncated to fit the string buffer.

Return Value Void, none.

Comments None.

Example char TagValue[132];
HPT hPtTag;

hPtTag = PtAccActivate(accID, "StringTagName");
if(hPtTag != NULL) {
 PtAccReadM(accID, hPtTag, TagValue, sizeof(TagValue));
}

IDEA Toolkit 10-45

 PtAccReadR
float

PtAccReadR(ACCID accID,
HPT hPt)

Description PtAccReadR returns the current value of an InTouch floating point variable.
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit.

hPt This is the Point Handle created by a call to
PtAccHandleCreate or PtAccActivate that
identifies the variable whose value to return.

Return Value The returned value is the value of the variable. It is a 32-bit IEEE floating point
number.

Comments If the type of the variable (hPt) being read is other than real, it will be converted to
a real value as follows:
Discrete If variable is off or 0, the result is 0.0. Otherwise the result is 1.0.

Integer The 32-bit signed integer is converted to 32-bit IEEE floating point
format. There is potential for loss of significant digits.

String This is an error condition, the returned value is always the largest
positive floating point value, approximately 3.4 e 38.

Example float TagValue;
HPT hPtTag;

hPtTag = PtAccActivate(accID, "FloatingPointTagName");
if(hPtTag != NULL) {
 TagValue = PtAccReadR(accID, hPtTag);
}

10-46 Chapter 10

 PtAccSetExtraInt
int

PtAccSetExtraInt(ACCID accID,
HPT hPt,
int nOffset,
int nValue)

Description PtAccSetExtraInt writes a value to a 4-byte (32-bit) field at the specified offset
within the extra storage area allocated for the specified HPT. If this feature is used,
IDEA must have been told to allocate extra storage for each HPT. This is done with
the nExtraBytes argument specified in the call to PtAccInit that created the ACCID.
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit.

hPt This is the Point Handle created by a call to
PtAccHandleCreate or PtAccActivate that
identifies the variable whose extra storage area is to
be modified.

nOffset The offset in the extra storage area where the 4-byte
value is to be stored. The offset must be between 0
and the size of the area - 4. The size of the area is
determined by the nExtraBytes argument to
PtAccInit.

nValue This is the new 4-byte value to be stored.

Return Value The value returned is the previous contents of the 4-byte field.

Example int OldValue;

OldValue = PtAccSetExtraInt(accID, hPtTag, 0, NewValue);

IDEA Toolkit 10-47

 PtAccSetExtraLong
long

PtAccSetExtraLong(ACCID accID,
HPT hPt,
int nOffset,
long lValue)

Description PtAccSetExtraLong writes a value to a 4-byte (32-bit) field at the specified offset
within the extra storage area allocated for the specified HPT. If this feature is to be
used, IDEA must have been told to allocate extra storage for each HPT. This is
done with the nExtraBytes argument specified in the call to PtAccInit that created
the ACCID.
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit.

hPt This is the Point Handle created by a call to
PtAccHandleCreate or PtAccActivate that
identifies the variable whose extra storage area is to
be modified.

nOffset The offset in the extra storage area where the 8-byte
value is to be stored. The offset must be between 0
and the size of the area - 4. The size of the area is
determined by the nExtraBytes argument to
PtAccInit.

lValue This is the new 4-byte value to be stored.

Return Value The value returned is the previous contents of the 4-byte field.

Example long OldValue;

OldValue = PtAccSetExtraLong(accID, hPtTag, 0, NewValue);

10-48 Chapter 10

 PtAccShutdown
int

PtAccShutdown(ACCID accID)

Description PtAccShutdown cleans up and shuts down a connection to InTouch (represented
by an ACCID.)
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit.

Return Value The returned value is 1 if successful or 0 if the function failed.

Example if(PtAccShutdown(accID)) {
 /* accID is no longer valid */
 accID = NULL;

} else {
 /* FALSE return indicates that the accID was invalid */
}

 PtAccShutdownAllAssociated
void

PtAccShutdownAllAssociated(HWND hWnd)

Description PtAccShutdownAllAssociated cleans up and shuts down every connection to
InTouch (ACCID) that was created in association with the specified hWnd.
Parameter Description

hWnd This is a window handle that was used in one or
more calls to PtAccInit. Every associated ACCID
will be shut down.

Return Value Void, none.

Example switch(message) {

case WM_ENDSESSION:
case WM_DESTROY:

 if(!PtAccShutdownAllAssociated(hWnd)) {
 /* Error */
 }
}

IDEA Toolkit 10-49

 PtAccType
PTYPE

PtAccType(ACCID accID,
HPT hPt)

Description PtAccType returns a code that indicates the type of an InTouch variable.
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit.

hPt This is the Point Handle created by a call to
PtAccHandleCreate or PtAccActivate that
identifies the variable whose type is to be returned.

Return Value The returned value is a code of the type PTYPE that indicates the type of the
variable:

PT_DISCRETE

PT_INTEGER

PT_REAL

PT_STRING

NULL is returned in the case of an invalid ACCID or HPT.

Example int SecondsType;

SecondsType = PtAccType(accID, hPtSeconds);
switch(SecondsType) {
 case PT_INTEGER:
 Seconds = PtAccReadI(accID, hPtSeconds);
 break;
 case PT_REAL:
 Seconds = PtAccReadR(accID, hPtSeconds);
 break;
 default:
 break;
}

10-50 Chapter 10

 PtAccWriteA
int

PtAccWriteA(ACCID accID,
HPT hPt,
double dValue)

Description PtAccWriteA sets a new value into an InTouch discrete, integer or floating point
variable.
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit.

hPt This is the Point Handle created by a call to
PtAccHandleCreate or PtAccActivate that
identifies the variable whose value to set.

dValue This is the new 64-bit IEEE value to set into the
InTouch variable.

Return Value The returned value is 1 if successful or 0 if the function failed.

Comments The value being written will be converted to the appropriate type according to the
type of the InTouch variable as follows:
Discrete If dValue is 0.0, 0 is written to the InTouch variable. Otherwise 1 is

written.

Integer If dValue is greater than the maximum 32-bit signed integer value
(2,147,483,647) the InTouch variable will be set to the maximum. If
dValue is less than the minimum 32-bit signed integer value (-
2,147,483,648) the InTouch variable will be set to the minimum.
Otherwise, dValue is converted to a 32-bit signed integer.

Real If dValue is greater than the maximum 32-bit IEEE floating point
value (3.4 e 38) the InTouch variable will be set to the maximum. If
dValue is less than the minimum 32-bit IEEE floating point value (-
3.4 e 38) the InTouch variable will be set to the minimum. Otherwise,
dValue is converted to a 32-bit IEEE floating point value.

String This is an error condition, no write takes place.

Example if(!PtAccWriteA(accID, hPtTag, NewDoubleValue)) {
 /* Error, accID or hPtTag invalid */
}

IDEA Toolkit 10-51

 PtAccWriteD
int

PtAccWriteD(ACCID accID,
HPT hPt,
int bValue)

Description PtAccWriteD sets a new value into an InTouch discrete variable.
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit.

hPt This is the Point Handle created by a call to
PtAccHandleCreate or PtAccActivate that
identifies the variable whose value to set.

bValue The new value for the variable. If bValue is 0, the
InTouch discrete variable is set to OFF, otherwise it
is set to ON.

Return Value The returned value is 1 if successful or 0 if the function failed.

Comments If the type of the variable (hPt) being written is other than discrete, it will be
converted to the appropriate value as follows:
Integer If bValue is zero, 0 is written to the InTouch variable. Otherwise 1 is

written.

Real If bValue is zero, 0.0 is written to the InTouch variable. Otherwise 1.0
is written.

String This is an error condition, no write takes place.

Example if(!PtAccWriteD(accID, hPtTag, NewDiscreteValue)) {
/* Error, accID or hPtTag invalid */
}

10-52 Chapter 10

 PtAccWriteI
int

PtAccWriteI(ACCID accID,
HPT hPt,
long lValue)

Description PtAccWriteI sets a new value into an InTouch integer variable.
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit.

hPt This is the Point Handle created by a call to
PtAccHandleCreate or PtAccActivate that
identifies the variable whose value to set.

lValue This is the new value to be set into the InTouch
variable.

Return Value The returned value is 1 if successful or 0 if the function failed.

Comments If the type of the variable (hPt) being written is other than integer, it will be
converted to the appropriate value as follows:
Discrete If lValue is zero, 0 is written to the InTouch variable. Otherwise 1 is

written.

Real lValue is converted to a 32-bit IEEE floating number. There is
potential for loss of significant digits.

String This is an error condition, no write takes place.

Example if(!PtAccWriteI(accID, hPtTag, NewIntegerValue)) {
 /* Error, accID or hPtTag invalid */
}

IDEA Toolkit 10-53

 PtAccWriteM
int

PtAccWriteM(ACCID accID,
HPT hPt,
LPSTR lpszValue)

Description PtAccWriteM sets a new value into an InTouch string variable.
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit.

hPt This is the Point Handle created by a call to
PtAccHandleCreate or PtAccActivate that
identifies the variable whose value to set.

lpszValue A far pointer to a the new string value to set into the
InTouch variable. This string must be at most 131
bytes in length. If the new string is longer than 131
characters, it will be truncated to 131.

Return Value The returned value is 1 if successful or 0 if the function failed.

Example if(!PtAccWriteM(accID, hPtTag, NewStringValue)) {
 /* Error, accID or hPtTag invalid */
}

10-54 Chapter 10

 PtAccWriteR
int

PtAccWriteR(ACCID accID,
HPT hPt,
float fValue)

Description PtAccWriteR sets a new value into an InTouch floating point variable.
Parameter Description

accID This is a handle of type ACCID returned by a
previous call to PtAccInit.

hPt This is the Point Handle created by a call to
PtAccHandleCreate or PtAccActivate that
identifies the variable whose value to set.

fValue This is the new IEEE 32-bit floating point value to
be set into the InTouch variable.

Return Value The returned value is 1 if successful or 0 if the function failed.

Comments If the type of the variable (hPt) being written is other than real, it will be converted
to the appropriate value as follows:
Discrete If fValue is 0.0, 0 is written to the InTouch variable. Otherwise 1 is

written.

Integer If fValue is greater than the maximum 32-bit signed integer value
(2,147,483,647) the InTouch variable will be set to the maximum. If
fValue is less than the minimum 32-bit signed integer value (-
2,147,483,648) the InTouch variable will be set to the minimum.
Otherwise, fValue is converted to a 32-bit signed integer.

String This is an error condition, no write takes place.

Example if(!PtAccWriteR(accID, hPtTag, NewFloatingPointValue)) {
 /* Error, accID or hPtTag invalid */
}

11-1

C H A P T E R 1 1

ITEdit.OCX

ITEdit is an OLE control specifically designed to access InTouch (6.0 or greater)
database from any OLE container that provides support for OLE controls. It can be
configured to respond to changes in InTouch tagname values in addition to changes
in InTouch run status. Some features are:

l ITEdit provides an interface, via OLE Automation, that enables the user to
programmatically alter its functionality

l ITEdit provides a property sheet for configuration purposes

l ITEdit is a replacement for the VBIT custom control for Visual Basic within
the 32 bit environment

l ITEdit functionality is provided via the newly created class CIdea, which is a
C++ wrapper around the functionality provided within PTACC DLL. It allows
the user to access these features without having to learn the intricacies of
PTACC.

Contents
n ITEdit Overview

n Registering ITEdit.OCX

n Installing ITEdit.OCX

n Custom Properties

n Events

n Error Dialog Box

11-2 Chapter 11

 ITEdit Overview
ITEdit is an OLE control specifically designed to access the InTouch database from
any OLE container that provides support for OLE controls. It can be configured to
respond to changes in InTouch tagname values and InTouch run status. ITEdit
provides an interface, via OLE automation, that enables you to programmatically
alter its functionality. In addition, ITEdit provides a property sheet for configuration
purposes. ITEdit is a replacement for the VBIT custom control for Visual Basic
within the 32 bit environment.

ITEdit is a subclassed edit control and therefore inherits all properties of this type of
control. ITEdit can be configured to reflect the value of any valid InTouch tagname.
ITEdit displays the current value of the tagname and uses this information to change
the tag's value. When the control has focus, all updates are suspended. You can now
change the value of the tagname. The new value is written to the tagname when
focus is lost or when Enter is pressed. Updates to the tag's value are reflected in the
control only after it has lost focus.

There are many ways to display the value of a tagname within ITEdit. ITEdit can be
configured to display different strings for different values of a "Discrete" tagname.
For tagnames of numeric types, you can use the familiar formatting capabilities of
InTouch to achieve desired output. For tagnames that are of type "Message", the
value displayed is independent of the format string specified.

 Registering ITEdit.OCX
 To register ITEdit control you must run the registration utility REGSVR32.EXE.
The command line is "REGSVR32 path\ITEDIT.OCX" (where path is the fully
qualified path to ITEDIT.OCX) and is entered in the directory where the control is
located.

The registration process results in information about the control being placed into
the system registry. ITEdit is automatically registered once it is installed. Once
registered, the control can be used by any application. However, ITEdit must be re-
registered anytime you change its location or copy it to a different computer.

Ø To register ITEdit:

1. On the Windows Taskbar, click Start and then, click Run. The Run dialog box
will appear.

2. In the Open box, type REGSVR32.EXE.

3. Type the path where ITEdit.OCX is located including the file name
ITEDIT.OCX.

4. Click OK.

ITEdit.OCX 11-3

 Installing ITEdit.OCX
 Install ITEdit.OCX into your development environment as you would with any new
control. The icon appears in your application.

 Configuring ITEdit.OCX
 The ITEdit Control Properties dialog box is used to configure ITEdit.OCX. The
dialog box is accessed via the Properties menu item on the Context menu. Right-
click on the control to display the ITEdit Control context menu, then select the
Properties item to open the dialog box. A listing of each field and its description are
as follows:

 General Tab
 The General Tab is used to configure custom properties of the ITEdit control.
Fonts and Colors tabs are common property sheets provided by Microsoft. They
are used to configure stock properties and are utilized by many other OLE Controls.
Field Description

Tagname Enter the tagname associated with the control in this
field.

Tag Browser Click Tag Browser to select a tagname. All
tagnames in the Tagname Data Dictionary are
shown.

11-4 Chapter 11

Field Description

Status Displays the status of InTouch and the tagname type
associated with the control.

InTouch: Running or Not Running.

Tag Type: Discrete, Real, Integer, or Message.

Output Format/Messages Contains three fields that configure the format for
the tag's value.

Format Used to define the output format for
numeric values in a text field. It
allows for other tests to be used
around the actual format
specification. For example: Welcome
#.# InTouch yields Welcome 3.2
InTouch.

On Msg: On - If you defined the tagname as a
discrete, when the tagname's value is
equal to 1, any message you enter
here will be displayed in the alarm
window's value/limit field.

Off Msg: Off - If you defined the tagname as a
discrete, when the tagname's value is
equal to 0, any message you enter
here will be displayed in the alarm
window's value/limit field.

Activation Mode Determines the interaction between the tagname and
the control. Select on the appropriate option to
configure the tag's activation property as follows:

Mode 0 Inactive-Write Immediately

Mode 1 Inactive

Mode 2 Activated-No update

Mode 3 Activated-Auto Update (Post)

Mode 4 Activated-Auto Update (Send)

For more information, refer to ITActivationMode
Property.

ITEdit.OCX 11-5

 ITEdit Properties
 The following is a list of ITEdit stock and custom properties.
Stock Properties Custom Properties

Appearance ITActivationMode

BackColor ITDataIsValid

BorderStyle ITFormat

Enabled ITOffMessage

Font ITOnMessage

ForeColor ITRunning

ITTagName

ITTagType

ITValue

ITValueQuality

 Stock Properties
Stock Property Description

Appearance Determines if the control is flat or 3D. Use (0) zero
for flat and (1) one for 3D.

BackColor Specifies the color of the interior of the control (in
RGB values).

BorderStyle Specifies if the control is drawn with or without a
border. Use (0) zero for no border and (1) one for a
border.

Enabled Specifies if the control can receive focus. Use (0)
zero for disabled and (1) one for enabled.

Font Specifies the current font for the control. An
OLEFONT structure is required to utilize this
property.

ForeColor Specifies the color for the display of the text and
graphics in the control (in RGB values).

11-6 Chapter 11

 Custom Properties
 This section describes ITEdit custom properties.

 ITActivationMode Property Windows NT
Description A read/write property that defines the mode of displayed tagname associated with

the control. Setting this property determines the interaction between the tagname
and the control. Interaction can range from none to the tagname being activated and
notification of changes being received.

Example TagMode = ITEditCtrl.ITActivationMode
ITEditCtrl.ITActivationMode = "4"

Valid Activation Modes are:
Mode Mode Description

0 Inactive. In this mode, no values will be read from
or written to the WindowViewer application.
Internally, no tag handle is created within the
control for the assigned tag. This is a great mode to
switch your control to when it will be idle in the
Visual Basic application. This will help reduce the
amount of overhead between your Visual Basic
application and WindowViewer.

1 Inactive: Write Immediately. A value may be
written to the tagname without waiting for the setup
period for I/O Server based tagnames.

In this mode, values may be written, but no values
may be read from the WindowViewer application.
Internally, no tag handle is initially created;
however, when a write is performed a tag handle is
created, activated, the value is written, and then the
tag handle is deactivated and deleted. This also
helps reduce the amount of overhead between your
Visual Basic application and WindowViewer. This
mode is perfect for controls that will only perform
writes to tags but no reads.

ITEdit.OCX 11-7

Mode Mode Description

2 Activated, No Update. Updates to the tag's value
are not received by the control. The tag's value is
updated when an ITValue property is being
retrieved or set.

In this mode, values may be read from or written to
the WindowViewer application. Internally, the tag
handle is created initially, then the handle is
activated and will stay that way as long as the
control is in this mode. This mode requires a little
more overhead since the tag handles are always
active. This means that even your WindowViewer
application has the tags active in its database. This
mode is good for tags that must remain active so
reads and writes can be performed "on the fly;"
however, most of the time switching between this
mode and mode 0 (zero) is your best bet. It will help
cut down on the overhead induced by keeping tag
handles active.

3 Activated Auto Update: Post. The value of
information displayed within the control is updated
whenever a PTACC notification message is
received. The notifications are achieved by using
"PostMessage".

In this mode, values may be written at any time to
WindowViewer, and when the value changes in
WindowViewer, it will automatically be reflected in
the control. Internally, the tag handle is created and
activated with the automatic notification method
using the PostMessage Windows API. This is very
handy for controls that will monitor things, like
heartbeats, and for controls where you're waiting for
a change in the value from WindowViewer to
perform some action within your Visual Basic
application. This mode requires more overhead than
the previous activation modes and should only be
used when necessary.

4 Activated Auto Update: Send. The value of
information displayed within the control is updated
whenever a PTACC notification message is
received. The notifications are achieved by using
"SendMessage.

This mode is almost identical to Mode 3, but it uses
the SendMessage Windows API, rather than the
PostMessage API. The drawback of this is that it
now runs synchronously with WindowViewer rather
than asynchronously. This can be a major drawback
to your Visual Basic application as it may slow it
down considerably, especially if the WindowViewer
application is busy (that is, many scripts, windows,
tags, an so on).

11-8 Chapter 11

Remarks Many users and developers simply drop the ITEdit control onto their Visual Basic
form and then switch to Mode 3 or 4. In some cases this is the best configuration.
However, there are other instances in which this isn't desirable.

 With very large, very busy InTouch applications, care must be taken when selecting
the activation modes. It's important to note that it's acceptable to switch from one
mode to another during runtime to achieve the desired affect. Switching modes
doesn't really add much overhead and could actually reduce overhead in the long
run.

Example Let's say we have a Visual Basic application with four instances of the ITEdit
ActiveX control in it. Each of them will be used for a different purpose while
communicating with a WindowViewer application. The following is a description of
what the controls will do:

l Control1 - Used to monitor a heartbeat tag

l Control2 - Used to monitor WindowViewer for a specific event

l Control3 - Used to loop through a list of tags and write values to them

l Control4 - Used to loop through a list of tags and read values from them

 The mode for Control1 should be set to 3. We need to have WindowViewer notify
us every time the heart beat changes so we don't have to ask WindowViewer for a
new value every second or so.

 For Control2, we should also set the mode to 3 whenever we need to monitor
WindowViewer for the event. There may be times when we don't need to monitor
the WindowViewer application for the change in this tag, so we would set the mode
to 0 (zero) during those periods to cut down on overhead.

 For Control3, we're going to loop through a list of tags and write to them. In this
case, we'll never perform any reads so we'll set the mode to 1. This will only create
and activate tag handles around the write, but at no other time, adding to the
efficiency of the application.

 At various times we'll be looping through a list of tags and reading from them with
Control4. During the read times, we'll set the mode to 2. There's no point in having
WindowViewer send notification messages when the tag value changes since we'll
be reading it with the ITValue property (and looping through several tags in the first
place). Therefore, Modes 3 and 4 would be pointless and would add too much
overhead to the application. During the times we're not reading from the tags, we
should set the mode to 0 (zero) to further reduce overhead.

 So, when should Mode 4 be used? First, you should understand the difference
between the APIs that are used with Modes 3 and 4. When the PostMessage
Windows API is used with Mode 3, an application will send a message to another
application, continue its processing, and assume the application that is the recipient
of the message did in fact receive the message. On the other hand, when the
SendMessage Windows API is used with Mode 4, the sending application will
actually wait for the receiving application to acknowledge receiving the message.
It's important to note that the return value the sender receives only tells the sender
that the intended application received the message, not that it was actually
processed properly.

ITEdit.OCX 11-9

 Thus, waiting for the receiving application to acknowledge that it received a
message can cause problems, particularly if the recipient is busy when the message
is sent. This will cause the sender to hang until a return value is sent by the recipient
application.

 There may be some cases when a developer may decide to use the SendMessage
approach (Mode 4) because it better suits their needs and they will choose it over
Mode 3. Regardless of which mode you choose, remember that it will always help
your Visual Basic and WindowViewer applications to run better if you can "turn
off" the automatic notification messaging and set the mode to zero as often as
possible.

 ITDataIsValid Property Windows NT
Description A read only property that determines whether data retrieved via the ITValue

property is valid. This property determines if InTouch is running and if the data
point is valid.

Example ValidData = ITEditCtrl.ITDataIsValid

 ITFormat Property Windows NT
Description A read/write property that defines the format of displayed value of the tagname.

You can embed any InTouch type format specifiers within this field.

Example TagFormat = ITEditCtrl.ITTagFormat
ITEditCtrl.ITTagFormat = "Total count of widgets is ##.##"

 ITOffMessage Property Windows NT
Description A read/write property that defines the value displayed for a Discrete tagname when

the value is FALSE. This will override any format string specified.

Example TagOffMessageString = ITEditCtrl.ITOffMessage
ITEditCtrl.ITOffMessage = "False"

 ITOnMessage Property Windows NT
Description A read/write property that defines the value displayed for a Discrete tagname when

the value is TRUE. This will override any format string specified.

Example TagOnMessageString = ITEditCtrl.ITOnMessage
ITEditCtrl.ITOnMessage = "True"

 ITRunning Property Windows NT
Description Checks status of InTouch. If InTouch is running, value True is returned, else False.

Read-only at runtime. Not available at design time.

Example InTouchRunning = ITEditCtrl.ITRunning

11-10 Chapter 11

 ITTagName Property Windows NT
Description Defines name of the InTouch tagname ITEdit control is attached to.

Example ITEditCtrl.ITTagName = "ReactorTag1"
TagString = ITEditCtrl.ITTagName

 ITTagType Property Windows NT
Description Returns type code of InTouch tagname which is attached to ITEdit control. Read

only at runtime. Not available at design time.

Example TagType = ITEditCtrl.ITTagType

Return values 1 = discrete tagname

 2 = integer tagname

 3 = real number tagname

 4 = message tagname

 ITValue Property Windows NT
Description A read/write property used to either get or set tagname values associated with the

control. The type of parameters needed to get or set the value varies depending on
the tagname type. This is the default property for this control. Setting the value
through this property results in a tagname database write. Retrieving the value
through this property results in a database read.

Example ITEditCtrl.ITValue = 78
ITEditCtrl = 89
Count = ITEditCtrl.ITValue
Count = ITEditCtrl

 ITValueQuality Property Windows NT
Description A read-only property that contains the InTouch tag data quality value. The data type

is a long integer (32-bit). Descriptions of InTouch quality values can be found in the
Chapter 5, "Protocols," in your FactorySuite System Administrator's Guide.

Example For an example using this property, see "Using ITNotifyValue and
ITNotifyQuality" later in this chapter.

ITEdit.OCX 11-11

 Events
 This section describes ITEdit events.

 ITNotifyValue Event Windows NT
Description Fires when the value of a particular InTouch tag changes or is initialized.

 For more information, see "Using ITNotifyValue and ITNotifyQuality" later in this
section.

 ITNotifyQuality Event Windows NT
Description Fires when the data quality of a particular InTouch tag changes or is initialized.

 For more information, see "Using ITNotifyValue and ITNotifyQuality" later in this
section.

 Using ITNotifyValue and ITNotifyQuality
 If both value and quality for a tag changes, the events will be triggered in the
following order: 1) ITNotifyValue, 2) ITNotifyQuality, and finally 3) ITNotify.

 The ITValue and ITValueQuality properties are updated prior to the triggering of
these events.

 The following programming example illustrates how to use the ITNotifyQuality
and ITNotifyValue events.
Dim MinTag, MaxTag As Integer

Private Sub ITEdit1_ITNotify()

 Rem This function can be used for backward compatibility

End Sub

Private Sub ITEdit1_ITNotifyQuality()

If ITEdit1.ITValueQuality <> &HC0 Then

 Rem Value Quality not GOOD

 ITEdit1.Enabled = False

 If (ITEdit1.ITValueQuality = &H56) Or
 (ITEdit1.ITValueQuality = &H55)

Continued

11-12 Chapter 11

Then

 Rem Value Quality is CLAMPED HIGH or CLAMPED LOW

 Label1.Caption = "TagName value must be changed"

 Else

 Rem Other bad Value Quality

 Label1.Caption = ""

 End If

 Else

 Rem Value Quality is GOOD

 ITEdit1.Enabled = True

 End If

End Sub

Private Sub ITEdit1_ITNotifyValue()

If ITEdit1.ITValueQuality = &HC0 Then

 Rem Value Quality is GOOD

 If ITEdit1.ITValue > MaxTag Then

 MaxTag = ITEdit1.ITValue

 End If

 If ITEdit1.ITValue < MinTag Then

 MinTag = ITEdit1.ITValue

 End If

End If

End Sub

 Error Dialog Box
 Displays when ITEdit.OCX is used and WindowViewer is not running.

12-1

C H A P T E R 1 2

Tag Access

This chapter provides instructions and documentation for using the Wonderware
Tag Access ActiveX objects for InTouch. The Tag Access objects consist of a
DataChange ActiveX control and a TagLink ActiveX object. The TagBrowser
ActiveX control is also installed. These components provide developers using
Visual Basic’s rapid application development (RAD) tools with the ability to
quickly deploy applications that link to the InTouch real-time database. Because
they utilize standard ActiveX technologies, these components are also useful in any
of the Microsoft Office applications as they can be used from within Visual Basic
for Applications (VBA) to expose an InTouch tag database object model.

Contents
n Tag Access ActiveX Objects for InTouch

n Requirements

n Deployment Information

n DataChange ActiveX Control

n TagLink Object

n Sample Applications

n Combining the DataChange Control and TagLink Object: An Example

n TagBrowser ActiveX Control

12-2 Chapter 12

 Tag Access ActiveX Objects for
InTouch

 The Tag Access ActiveX objects can be used to develop extensions to InTouch in a
variety of ways:

l They can be used to develop standalone applications that integrate with
InTouch, such as custom data loggers, setpoint downloading,
statistical/advanced numerical analysis, custom InTrack clients, and more.

l They can be used to create ActiveX servers that can be called from within the
InTouch scripting environment, allowing Visual Basic to be used for the bulk
of application scripting, leveraging the speed, functionality, and extensibility of
Visual Basic.

l These components can be embedded into other ActiveX controls, enabling
them to be used in the creation of custom ActiveX controls such as special
types of animations, charts, or user interface objects that can be used in
InTouch or Visual Basic and are bound to data in the InTouch tagname
dictionary.

 The Tag Access ActiveX objects also allow "encapsulation" of business logic or
process expertise in high-performance compiled objects that cannot be inadvertently
changed or "borrowed" by others. Updates to the business logic can be deployed
without requiring modifications to the InTouch application. This is an extremely
powerful capability to virtually any type of FactorySuite user. OEMs can protect
their proprietary value-added to the FactorySuite, systems integrators can develop
vertical-industry application components that they can reuse in their projects, and
end users can develop "standard objects" that can be deployed throughout their
plant or enterprise.

 The TagLink object provides access to all relevant dot fields of an InTouch tag,
including both read and write access where appropriate, and the DataChange
ActiveX control provides a means to monitor one or more InTouch tags and to
receive notification whenever the value, alarm state, or acknowledge state changes.
The TagBrowser ActiveX control provides a means to browse the tagname database
for any InTouch application, remote or local. Extensive capabilities to filter and
control the appearance of the browser are provided.

 A number of sample applications have been provided that allow you to see "real-
world examples" of how these components can be applied to implement innovative
solutions to your manufacturing challenges.

 For more information, see "Sample Applications" later in this chapter.

Tag Access 12-3

 Requirements
 Requirements for using the Tag Access objects are as follows:

l In order to use these controls with Visual Basic, you must be using Visual
Basic 6.0 with FactorySuite 2000, Version 7.1 (or later).

l InTouch 7.1 or later must be installed, and an InTouch runtime license is
required at each node that will be using the Tag Access ActiveX objects. We
strongly suggest installing all applicable Windows NT and FactorySuite
Service Packs.

l To use the ActiveX objects with Microsoft Office and Microsoft Visual Basic,
it is essential that Office Service Release 2 or later be installed. Office
Service Release 2 fixes a number of critical bugs in VBA, particularly
when using VBA within Microsoft Excel.

Note This release does not support remote referencing of InTouch data using
ACCESSNAME:TagName.Field syntax.

12-4 Chapter 12

 Deployment Information
 After building your applications on your Visual Basic development computer, it is
strongly suggested that you develop a setup/installation program for deploying your
application/component on other computers. We have had good experiences with
InstallShield and Wise Installation. Be sure to install the following files in your
application as needed:

 Installation Files

 InTouchCOM.DLL (for the TagLink and DataChange objects)

 LHTagBrowser.OCX (for the TagBrowser ActiveX control)

 Registration

 Both files are self-registering. Prior to registering InTouchCOM.DLL, be certain
that the InTouch installation directory is in the PATH environment variable
(typically C:\Program Files\FactorySuite\InTouch). This is critical for accessing
certain InTouch DLLs that are used by the InTouchCOM.DLL component.

 Dependencies

l Both files require the MFC DLL (MFC42.DLL) and the Microsoft C Runtime
library (MSVCRT.DLL).

l LHTagBrowser.OCX also requires the Visual Basic Runtime
(MSVBVM50.DLL) and the Common Controls component
(COMCTL32.OCX).

l InTouchCOM.DLL requires that InTouch 7.0 or newer must be installed and an
InTouch runtime license is required at each node that will be using these
ActiveX controls and objects. We strongly suggest installing all applicable
Windows NT and FactorySuite service packs.

Tag Access 12-5

 DataChange ActiveX Control
 The DataChange ActiveX control is extremely useful for implementing "event-
based" rather than "polling-based" applications that will need to integrate with the
InTouch real-time tag database. This ActiveX control allows the developer to
monitor the value, alarm status, and acknowledge status of any InTouch tag and to
receive ActiveX events whenever any of these values change.

 Each DataChange ActiveX control can monitor up to 512 InTouch tags. The
ActiveX control maintains an "active watch list" of tags that are of interest to the
container application. The AddWatch and RemoveWatch methods are used to add
or remove tags from this list. In general, it is more efficient to have a single instance
of the DataChange ActiveX control monitor multiple tags than to create multiple
instances of the ActiveX control on a form.

 The application developer has control over which events are generated for each
monitored tag. This is determined by passing the appropriate flags when the
AddWatch method is called to add a tagname to the active list. Separate flags are
provided to enable/disable the ValueChanged, AlarmStatusChanged, and
AckStatusChanged events.

 Another useful feature is the ability to associate a user-determined value (a Variant
value) with each entry in the active tag list. This parameter is passed (along with the
tagname and the changed value) to the event handler routine for each of the three
types of events, providing another means besides the tagname for associating the
event with some code or other item in the container application. A common example
might be a color chart application monitoring an array of tags, such as the ten
temperature readings in a baking oven, and associating a value identifying the oven
heating zone with each monitoring point. When any of the zone temperatures
changes or changes alarm/ack state, the container application can simply use the
UserData parameters as an index to quickly redraw the display.

 Since the UserData parameter is a "Variant" data type, it can also be used to store
references to other objects, such as a reference to a TagLink object that corresponds
to the same tag. In this manner, whenever an event is received, you could easily
access any of the tag’s dot fields at the same time you are handling the event.

12-6 Chapter 12

 Events
 The DataChange ActiveX control can generate up to three events for each tag that it
monitors. These events correspond to the most commonly accessed attributes of an
InTouch tag, those being its value, its alarm status, and its acknowledge status.
Whenever the value of any of these attributes changes for a tag being monitored, the
associated event will be fired.

Note Whenever a tag is added to the active "watch list" using the AddWatch
method, a set of Boolean flags are used to indicate which events are of interest to
the application, allowing specific events to be monitored or suppressed on a "per
tag" basis.

 AckStatusChanged
 This event is fired whenever the .Ack field for a tag being monitored changes state.
The event handler format (shown as it might appear in Visual Basic) is:

Private Sub DataChange1_AckStatusChanged(ByVal TagName As
String, ByVal AckStatus As Long, ByVal UserData As Long)

 Debug.Print "Ack Changed For " + TagName + " To " +
Format$(AckStatus)

End Sub

 The UserData parameter is the same user-supplied value that was associated with
the tag when the AddWatch method was called and can be used as an alternative to
the tagname as a means to determine which tag has changed.

 AlarmStatusChanged
 This event is fired whenever the .Alarm field for a tag being monitored changes
state. Note that an event will not be fired when the tag changes from one alarm state
to another, such as HI to HIHI, but only from Normal to Alarm or Alarm to Normal.
The event handler format (shown as it might appear in Visual Basic) is:

Private Sub DataChange1_AlarmStatusChanged(ByVal TagName As
String, ByVal AlarmStatus As Long, ByVal UserData As Long)

 Debug.Print "Alarm Changed For " + TagName + " To " +
Format$(AlarmStatus)

End Sub

 The UserData parameter is the same user-supplied value that was associated with
the tag when the AddWatch method was called and can be used as an alternative to
the tagname as a means to determine which tag has changed.

Tag Access 12-7

 ValueChanged
 This event is fired whenever the value of a tag being monitored changes. Note that
the data type for the value is a VARIANT, since the actual data type is dependent
on the InTouch tag type. The event handler format (shown as it might appear in
Visual Basic) is:

Private Sub DataChange1_ValueChanged(ByVal TagName As String,
ByVal Value As Variant, ByVal UserData As Long)

 Debug.Print "Value Changed For " + TagName + " To " +
Format$(vData)

End Sub

 The corresponding data types for each InTouch tag type are:

 InTouch Tag Type VARIANT data type

 Discrete Boolean (VT_BOOL)

 Integer Long Integer (VT_I4)

 Real Float (VT_R4)

 Message String (VT_BSTR)

 The UserData parameter is the same user-supplied value that was associated with
the tag when the AddWatch method was called and can be used as an alternative to
the tagname as a means to determine which tag has changed.

 Methods
 Each DataChange ActiveX control can monitor up to 512 InTouch tags. The
ActiveX control maintains an "active watch list" of tags that are of interest to the
container application. The AddWatch and RemoveWatch methods are used to add
or remove tags from this list.

Note Each of the methods can potentially raise ActiveX errors if invalid tagnames
are passed as parameters. As such, normal Visual Basic (or other) client error
handling can be used to trap and handle these errors in the calling application.

 AddWatch
 This method is used to add a tag to the "active watch list" for a specific instance of
the DataChange control. If the tagname is not valid, the maximum number of active
tags is exceeded, or if communications cannot be established to InTouch, an
ActiveX error will be raised. Conversely, the RemoveWatch method removes a tag
from the active watch list. The syntax for the method, shown in Visual Basic form,
is as follows:

Call DataChangeControl.AddWatch(ByVal TagName As String, ByVal
Boolean bNotifyValue, ByVal Boolean bNotifyAlarms, ByVal
Boolean bNotifyAcks, ByVal Variant UserData)

12-8 Chapter 12

 Note that the Boolean and Long are similar from an ActiveX perspective, thus the
type library will indicate a "Long" data type for BOOL parameters.
 Parameter Description

 TagName A string value containing the InTouch tagname to
be monitored

 bNotifyValue A Boolean flag indicating whether value change
events should be generated for this tag

 bNotifyAlarms A Boolean flag indicating whether alarm status
change events should be generated for this tag

 bNotifyAcks A Boolean flag indicating whether ack status change
events should be generated for this tag

 UserData A Variant value that represents a user-supplied
value which will be sent with any notification events

Return Type This method does not return a value.

Example The following code fragment demonstrates this method. In this example, we add ten
tags to the active watch list and ask the control to notify us if either the value, alarm,
or ack state changes (all three event flag parameters are "true"). We also use the
UserData parameter to store the index into an array, which we could use later in the
event handler. Of course, this value could be simply set to zero as well.

Const NUMTAGS = 10

Dim I As Integer

 ‘ Use "inline" error handling

On Error Resume Next

For I=1 to NUMTAGS

 Call DataChange1.AddWatch("Analog"+Format$(I),true,
true,true,I)

 If Err.Number <> 0 Then

 MsgBox Err.Description

End If

Next

 For information and example code on how the UserData parameter can be used to
enhance the power of the DataChange ActiveX control and to integrate the control
with the TagLink object, see "DataChange ActiveX Control."

Tag Access 12-9

 RemoveWatch
 This method is used to remove tag from the "active watch list" for a specific
instance of the DataChange control. If the tagname is not found in the active list, an
ActiveX error will be raised (and can be handled by the caller). Conversely, the
AddWatch method adds a tag to the active watch list. The syntax for the method,
shown in Visual Basic form, is as follows:

Call DataChangeControl.RemoveWatch(ByVal TagName As String)

 Parameter Description

 TagName A string value containing the InTouch tagname to
be removed from the active list

Return Type This method does not return a value.

Example The following code demonstrates how this method might be used in an application.

 ‘ Trap the possible error if the tagname is not valid

On Error Resume Next

Call DataChange1.RemoveWatch("MyTagName")

If Err.Number <> 0 Then

 MsgBox "Tag Was Not Being Monitored" + Err.Description

End If

 Trappable Errors
 The following trappable errors are generated by the DataChange ActiveX control:

 Value Description

 8193 "Connection To InTouch Failed"

 8194 "Invalid Tag Name"

 8200 "Exceeded maximum number of tags that can be active for a
single control (512)"

 8201 "Specified tagname was not in the active list"

12-10 Chapter 12

 TagLink Object
 The TagLink object provides an ActiveX/COM object model wrapper around the
InTouch tag database, allowing full access to the various attributes and dot fields of
an InTouch tag using properties of the TagLink object. Many of these properties can
be written to in addition to read, allowing application to perform advanced tasks as
changing process values, adjusting alarm limits, enabling/disabling alarms,
acknowledging alarms, and many other functions.

 Users with special data handling needs, such as event-based collection of "record-
oriented" data to a relational database, recipe handling, specialized reporting,
complex algorithms, and so on can leverage the power and speed of Visual Basic
while maintaining live connections to InTouch data and freeing themselves from the
limitations of the InTouch scripting language for more advanced applications.

 InTrack users who have chosen to use Visual Basic as their GUI development
environment can leverage the power of InTouch for communicating to shop floor
data, while bypassing the drawbacks of DDE (single dot field at-a-time access, extra
configuration, etc). Additionally, with the ActiveX automation support in the
InTouch scripting language provided with InTrack, developers can perform virtually
all of their scripting in a higher-level language such as Visual Basic, compile these
scripts as ActiveX automation servers, and call them from InTouch.

 There are double benefits to InTrack users, in that they get not only the advantages
of the Visual Basic programming language (structures, arrays, rich set of functions,
and so on), but also higher InTrack transaction throughput, since Visual Basic
performs "early binding" against the InTrack engine versus the "late binding" that
InTouch’s scripting performs.

 OEMs who have specialized application requirements that are cumbersome to
implement inside the InTouch GUI environment are that are awkward and time-
consuming to implement using InTouch scripting can also exploit the Tag Access
objects to maximize the value of their offering integrated with the FactorySuite, and
can hide and embed their own proprietary content without fear of it being copied by
a competitor, which is a distinct possibility if standard scripting is used.

 When developing ActiveX controls that will be used within InTouch, one advantage
of using the TagLink object approach versus the property binding provided by
InTouch is that tag associations can be changed "on the fly" by the application and
that access to multiple dot fields can be accomplished with a single property
assignment. (InTouch's property binding requires that each dot field be bound to a
separate property.)

Tag Access 12-11

 A good example would be creating a PID faceplate ActiveX control, where it would
be desirable to access 15-20 dot fields in the object, such as engineering units and
scaling information, alarm ranges, alarm states, and so on. Using the Tag Access
objects, a single "LoopID" property could be used externally and bound to an
InTouch message tag, and internally a TagLink object could be used to access all of
the necessary dot fields. Conversely, using the InTouch property binding technique,
20 separate properties would need to be exposed by the ActiveX control, and
tedious configuration performed to map each dot field to its associated property.

 Another powerful benefit of the TagLink object is the ability to integrate it with
Microsoft’s Visual Basic for Applications (VBA) environment, which is built into
the Microsoft Office suite of applications and other third-party products. Using the
Tag Access objects allows a high-performance means for linking products such as
Microsoft Excel or Word to the InTouch tag database for advanced reporting,
charting, or numerical analysis.

 Properties
 The TagLink object exposes a number of properties that correspond to the many dot
fields or attributes that comprise an InTouch tag. Many of these properties are
write-able as well as readable. Some properties are useful only for specific InTouch
tag types (for example, the HiLimit property is meaningless for a discrete tag).

 The TagName property is the means by which a TagLink object is associated with
an InTouch tag, the TagType property indicates the data type of the tag, and the
Valid property is used to determine whether a TagLink object is currently connected
to an InTouch tag.

 TagName
 The TagName property is the most important of the properties, as it is used to
associate an instance of a TagLink object with a specific InTouch tag. Setting the
TagName property causes the ActiveX server to attempt to connect to InTouch and
establish a link to the specified tagname.

 If the TagLink object was already active and linked to another InTouch tag, that link
will be disconnected first. To "disconnect" a TagLink object without assigning a
new tagname, simply assign a null string (not a null pointer) to the TagName
property. The ActiveX server will automatically disconnect the tag link to InTouch
when the TagLink object falls out of scope (for example, a TagLink object created
and used within a Visual Basic subroutine).

 If the tagname is not valid, or if communications cannot be established to InTouch,
a trappable ActiveX error will be raised which can be handled by the container
application.

Note The tagname string can be expressed as a remote reference, using the same
syntax as when using remote references in InTouch animation links.

12-12 Chapter 12

 Setting the TagName Property: Example 1
 The following example demonstrates how to set the TagName property in Visual
Basic. This example also demonstrates one technique for trapping errors, such as
invalid tagnames or InTouch not being active by using a specific error hander:

 ‘ Declare a TagLink object

Dim MyTag As TagLink

 ‘ Create the TagLink object

Set MyTag = new TagLink

 ‘ Trap any errors by jumping to our error handling code

On Error GoTo OurErrorHandler

 ‘ Attach to the tagname "Analog1"

MyTag.TagName = "Analog1"

MsgBox "The Value of "+MyTag.TagName + " is
"+Format$(MyTag.Value,"0.00")

 ‘ Attach to the tagname "Analog2"

MyTag.TagName = "Analog2"

MsgBox "The Value of "+MyTag.TagName + " is
"+Format$(MyTag.Value,"0.00")

 ‘ Deactivate the link

MyTag.TagName = ""

OurErrorHandler:

 MsgBox Err.Description

 Setting the TagName Property: Example 2
 You can create arrays of tag links to simulate array tag types that reads the values
from ten analog tags, named "Analog1" to "Analog10" as shown in the following
example. This example demonstrates an alternative error handling mechanism,
which looks at the error code after each call that could potentially generate a
trappable error.

Const NUMTAGS = 10

Dim AnalogTags As TagLink(NUMTAGS)

Dim I As Integer

 ‘ Use "inline" error handling

On Error Resume Next

For I=1 to NUMTAGS

 Set AnalogTags(I) = New TagLink

 AnalogTags(I).TagName = "Analog"+Format$(I)

 If Err.Number <> 0 Then

 MsgBox Err.Description

End If

Tag Access 12-13

Next

 ‘ Now write the values to the debug output

For I=1 to NUMTAGS

 If AnalogTags(I).Valid Then

 Debug.Print AnalogTags(I).Value

 End If

Next

 TagType
 The TagType property is an integer value that indicates the data type for the value
of the tag specified . An enumeration is provided in the type library for the TagLink
object that can be used to interpret the TagType property. The following table lists
the possible values:

 PT_UNKNOWN = 0

 PT_DISCRETE = 1

 PT_INTEGER = 2

 PT_REAL = 3

 PT_MESSAGE = 4

 PT_GROUP = 7

 In addition to describing the data type for the value of the tag, the tag type also
determines the data type for certain dot fields, such as alarm limits, raw and
engineering unit ranges, and others. The dot field reference table lists which
elements vary depending on the tag data type.

 For more information, see "Dot Field Properties" later in this chapter.

 Valid
 The Valid property is a Boolean value that indicates whether or not a link was
successfully established with InTouch for the specified tag. It can be checked
anytime after the TagName property has been set.

12-14 Chapter 12

 Dot Field Properties
 This section describes some important attributes of the properties that correspond to
the various dot fields supported by InTouch tags. Note that not all tag types support
all of the dot fields. If application attempts to access a dot field that is not valid for
the associated tag, a trappable ActiveX error will be raised.

 The following table displays the list of supported fields, along with their data type
and whether the property is read only or read/write. Note that the data types of
certain dot fields are dependent on the tag type. Notably, the two types of analog
tags, Integer and Real, use different data types for handling their value, alarm limits,
and other characteristics. For Integer tags, these fields are handled as long integer
values (4 byte), and for Real tags they are handled as float values (4 byte).

Note Refer to the InTouch reference information for detailed descriptions of the
purpose and functionality of each supported dot field. The InTouch documentation
will indicate which dot fields are support for the various tag types. Also, the TagList
object does not support HistoricalTrend tag dot fields or PenID dot fields.

 Dot Field Name Data Type Access Mode

 Ack Boolean R/W

 Alarm Boolean R

 AlarmDevDeadband Float R/W

 AlarmEnabled Boolean R/W

 AlarmValDeadband Variant (depends on tag type) R/W

 Comment String R

 DevTarget Variant (depends on tag type) R/W

 EngUnits String R

 HiHiLimit Variant (depends on tag type) R/W

 HiHiSet Boolean R

 HiHiStatus Boolean R

 HiLimit Variant (depends on tag type) R/W

 HiSet Boolean R

 HiStatus Boolean R

 LoLimit Variant (depends on tag type) R/W

 LoLoLimit Variant (depends on tag type) R/W

 LoLoSet Boolean R

 LoLoStatus Boolean R

 LoSet Boolean R

 LoStatus Boolean R

 MajorDevPct Float R/W

 MajorDevSet Boolean R

Tag Access 12-15

 Dot Field Name Data Type Access Mode

 MajorDevStatus Boolean R

 MaxEU Variant (depends on tag type) R

 MaxRaw Variant (depends on tag type) R

 MinEU Variant (depends on tag type) R

 MinorDevPct Float R/W

 MinorDevSet Boolean R

 MinorDevStatus Boolean R

 MinRaw Variant (depends on tag type) R

 Normal Boolean R

 OffMsg String R

 OnMsg String R

 Quality Long integer R

 QualityLimit Long integer R

 QualityLimitString String R

 QualityStatus Long integer R

 QualityStatusString String R

 QualitySubstatus Long integer R

 QualitySubstatusString String R

 RawValue Variant (depends on tag type) R

 Reference String R/W

 ReferenceComplete Boolean R

 ROCPct Long Integer R/W

 ROCSet Boolean R

 ROCStatus Boolean R

 SPCStatus Boolean R

 TagType Short Integer R

 TimeDate Long integer R

 TimeDateString String R

 TimeDateTime Float R

 TimeDay Long integer R

 TimeHour Long integer R

12-16 Chapter 12

 Dot Field Name Data Type Access Mode

 TimeMinute Long integer R

 TimeMonth Long integer R

 TimeMSec Long integer R

 TimeSecond Long integer R

 TimeTime Long integer R

 TimeTimeString String R

 TimeYear Long integer R

 Unack Boolean R

 Value Variant (depends on tag type) R/W

Tag Access 12-17

 Trappable Errors
 The following trappable errors are generated by the TagLink object:
 Value Description

 8193 "Connection To InTouch Failed"

 8194 "Invalid Tag Name"

 8195 "Invalid Field Name"

 8196 "Read Failed"

 8197 "Write Failed"

 8198 "Wrong Data Type"

 8199 "Tag link is not active – cannot access field"

 Sample Applications
Note These sample applications have been provided as learning tools only. As
such, they are not extensively documented nor is complete error handling
implemented. These are not supported products, and we regret that we cannot
provide technical assistance on using/modifying these sample applications. Use at
your own risk.

 A number of sample applications are installed with the product. The sample
applications provided include:

 SAMPLES\TESTAPP

 InTouch Application for use with the Visual Basic Demo Applications.

 SAMPLES\TAGACCESSVBADEMO

 Excel Spreadsheet Accessing InTouch via Visual Basic for Applications (VBA).

 SAMPLES\CIRCCHART

 Visual Basic ActiveX Control that simulates a Circular Chart Recorder. This control
is not automatically registered upon installation. You will need to either explicitly
register it using REGSVR32 or rebuild the project using Visual Basic.

 SAMPLES\LEDTEST

 Visual Basic Application Demonstrating Simple Use of TagLink and DataChange
Objects.

 SAMPLES\WWDEBUG

 General-Purpose Visual Basic Application For Interactively Viewing/Manipulating
InTouch Realtime Tag Database Information – Uses TagLink, DataChange, and
LHTagBrowser Objects.

12-18 Chapter 12

 Combining the DataChange Control
and TagLink Object: An Example

 The following simple example demonstrates how you might combine the two
objects. This code monitors two tags for alarm state changes and displays a detailed
message on each alarm event.

Note Displaying a message box as shown in this example should never be done in a
real application, as your event handlers should do their processing and return as
soon as possible, rather than performing a modal action.

 ‘ Declare Two TagLink objects

Dim MyTag1 As TagLink

Dim MyTag2 As TagLink

 ‘ This subroutine sets up the necessary links

Sub SetupLinks

‘ Create the TagLink objects

Set MyTag1 = new TagLink

Set MyTag2 = new TagLink

 ‘ Trap any errors by jumping to our error handling code

On Error GoTo OurErrorHandler

 ‘ Attach to the tagname "Analog1"

MyTag1.TagName = "Analog1"

 ‘ Attach to the tagname "Analog2"

MyTag2.TagName = "Analog2"

 ‘ Place these tags "on watch", ignoring value and ack status
changes

Call DataChange1.AddWatch("Analog1",false,true,false,MyTag1)

Call DataChange1.AddWatch("Analog2",false,true,false,MyTag2)

OurErrorHandler:

 MsgBox Err.Description

End Sub

continued

Tag Access 12-19

 ‘ This event handler responds to alarm change events

Private Sub DataChange1_AlarmStatusChanged(ByVal TagName As
String, ByVal AlarmStatus As Long, ByVal UserData As Variant)

Dim szAlarmStatus As String

SzAlarmStatus = "TagName "+ TagName + " Changed To "

If UserData.Normal Then

 szAlarmStatus = szAlarmStatus + "Normal"

Else

 If UserData.HiHiStatus Then

 szAlarmStatus = szAlarmStatus + "HiHi"

 End If

 If UserData.HiStatus Then

 szAlarmStatus = szAlarmStatus + "Hi"

 End If

 If UserData.LoStatus Then

 szAlarmStatus = szAlarmStatus + "Lo"

 End If

 If UserData.LoLoStatus Then

 szAlarmStatus = szAlarmStatus + "LoLo"

 End If

End If

 ‘ Tag on the current value

SzAlarmStatus = szAlarmStatus + " At A Value Of " +
Format$(UserData.Value)

 ‘ Display a message box

MsgBox szAlarmStatus

End Sub

Note It is recommended, but not required, that when the DataChange control is
added to a Visual Basic form, the "Visible" property provided by Visual Basic for
this control should be set to "false", since this control provides no run-time user
interface.

Note It is important to note that the AlarmStatusChanged event is generated only
when the .Alarm field of an InTouch tag changes state, such as going from any
alarm condition back to normal, or from normal to any alarm condition. This event
is not generated when the tag changes from one alarm state to another, such as from
HI to HIHI. However, by combining the TagLink object with the DataChange
object's ValueChanged event, full access to any of the dot fields can be achieved,
allowing determination of individual alarm status, as described above.

12-20 Chapter 12

 TagBrowser ActiveX Control
 The following are a few tips/suggestions for using the TagBrowser ActiveX control:

l For reference purposes, the actual name (ProgID) of the TagBrowser ActiveX
control is LHTagBrowser.TagDisplay

l Be certain to size the TagBrowser ActiveX control large enough to display all
of the browser components.

l Remember to call the UpdateView method whenever new filter expressions
have been set to update the list of tags.

 Properties
 The following sections describe the properties of the TagBrowser ActiveX control.

 AccessNameFilter
 This property is a String value that, when set to anything other than an empty string
(""), will filter the list of tags based on standard pattern matching rules against the
AccessName assigned to the tag. For example, to display all tags in the
AccessName called "ABPLC99", this property could be set using:

TagDisplay1.AccessNameFilter = "ABPLC99"

TagDisplay1.UpdateView

 For more information on how to define filter strings, see "Filter Expressions" later
in this chapter.

 Remember to call the UpdateView method to refresh the display after changing
filter properties.

 AlarmGroupFilter
 This property is a String value that, when set to anything other than an empty string
(""), will filter the list of tags based on standard pattern matching rules against the
AlarmGroup assigned to the tag. For example, to display all tags in AlarmGroups
that begin the word "Unit" and end with the word "Utilities", this property could be
set using:

TagDisplay1.AlarmGroupFilter = "Unit*Utilities"

TagDisplay1.UpdateView

 For more information on how to define filter strings, see "Filter Expressions" later
in this chapter.

 Remember to call the UpdateView method to refresh the display after changing
filter properties.

Tag Access 12-21

 AllowBrowsing
 This is a Boolean (true/false) property that, when set to true, will allow the user to
double-click on the application path and browse to other InTouch application
directories.

 AllowViewChanges
 This is a Boolean (true/false) property that, when set to true, will allow the user to
click on the Report/List view icons at the lower-left corner of the control. This will
switch the view between a Report view (detailed data displayed in columns) or a
List view (small icons only).

 The Report view is shown as follows:

 The List view is shown as follows:

 AppPath
 This is a String property used to specify the InTouch application directory from
which the tag browser will lookup tag information. For example:

TagDisplay1.AppPath = "D:\WWAPPS\MYAPPLICATION"

 You can also use the GetCurrentAppPath method to set this value automatically
based on the last InTouch application that was edited in WindowMaker or run in
WindowViewer on the current computer.

 If the AutoRefresh property is enabled, the UpdateView method will automatically
be called each time the application path is changed.

12-22 Chapter 12

 AutoRefresh
 This is a Boolean (true/false) property that determines whether or not the display
will be automatically updated whenever the application path is changed. If the
AutoRefresh property is enabled, the UpdateView method will automatically be
called each time the application path is changed.

 HistoricallyLoggedOnly
 This is a Boolean (true/false) property that, if set to true, will display only tags that
are configured to be historically logged to InTouch's standard historical logging
system (for example, the Log Data option is selected in WindowMaker's tag
editor).

 LogEventsOnly
 This is a Boolean (true/false) property that, if set to true, will display only tags that
are configured to have events logged to InTouch’s alarm system (for example, the
Log Events option is selected in WindowMaker's tag editor).

 RetentiveOnly
 This is a Boolean (true/false) property that, if set to true, will display only tags that
are configured to be retentively stored.

 SelectedTag
 This is a String property corresponding to the currently selected tagname. You can
also cause a tagname to be selected programmatically by assigning a value to this
property.

 SelectedTagAccessName
 This is a String property corresponding to the Access Name for the currently
selected tag.

 SelectedTagAlarmGroup
 This is a String property corresponding to the Alarm Group for the currently
selected tag.

 SelectedTagDescription
 This is a String property corresponding to the Tag Description for the currently
selected tag.

 SelectedTagMode
 This is a String property corresponding to the tag mode for the currently selected
tag.

 Valid Tag Modes: "System", "Memory", "I/O", or "?????"

Tag Access 12-23

 SelectedTagType
 This property is a read-only integer value that corresponds to the tag type for the
currently selected tag.

 For more information, see "Valid Tag Types" later in this chapter.

 ShowAccessNames
 This is a Boolean (true/false) property that, if set to true, will display the Access
Names for each tag when Report View is active.

 ShowAppPath
 This is a Boolean (true/false) property that, if set to true, will display the currently
selected application path at the bottom of the control.

 TagNameFilter
 This property is a String value that, when set to anything other than an empty string
(""), will filter the list of tags based on standard pattern matching rules. For
example, to display all tags beginning with the letters "TIC," this property could be
set using:

TagDisplay1.TagNameFilter = "TIC*"

TagDisplay1.UpdateView

 For more information on how to define filter strings, see "Filter Expressions" later
in this chapter.

 Remember to call the UpdateView method to refresh the display after changing
filter properties.

 TagTypeFilter
 This property is an integer value that, when set to a non-zero value, will display
only tags matching the specified type. To display all tags, set this property to zero
(0).

 For more information, see "Valid Tag Types" later in this chapter.

12-24 Chapter 12

 Valid Tag Types
 The following list describes the various constants that correspond to the various
InTouch tag types:

Public Enum enumTagType

 tagTypeAll = 0

 tagTypeIODiscReadOnly = 201

 tagTypeIODisc = 202

 tagTypeIOIntReadOnly = 203

 tagTypeIOInt = 204

 tagtypeIORealReadOnly = 205

 tagtypeIOReal = 206

 tagtypeIOMsgReadOnly = 207

 tagtypeIOMsg = 208

 tagtypeMemoryDisc = 209

 tagtypeMemoryInt = 211

 tagtypeMemoryReal = 213

 tagtypeMemoryMsg = 215

 tagtypeAlarmGroup = 217

 tagtypeGroupVar = 218

 tagtypeHistTrend = 222

 tagtypeTagID = 223

 tagtypeIndirectDisc = 224

 tagtypeIndirectAnalog = 225

 tagtypeIndirectMsg = 226

End Enum

Tag Access 12-25

 Filter Expressions
 The general syntax for search expressions is as follows:

 String comparisons are based on a case-insensitive, textual sort order determined by
your system's locale. The pattern-matching features allow you to use wildcard
characters, character lists, or character ranges, in any combination, to match strings.
The following table shows the characters allowed in pattern and what they match:
 Characters in pattern Matches in string

 ? Any single character.

 * Zero or more characters.

 # Any single digit (0–9).

 [charlist] Any single character in charlist.

 [!charlist] Any single character not in charlist.

 A group of one or more characters (charlist) enclosed in brackets ([]) can be used
to match any single character in string and can include almost any character code,
including digits.

Note To match the special characters left bracket ([), question mark (?), number
sign (#), and asterisk (*), enclose them in brackets. The right bracket (]) can't be
used within a group to match itself, but it can be used outside a group as an
individual character.

 By using a hyphen (–) to separate the upper and lower bounds of the range, charlist
can specify a range of characters. For example, [A-Z] results in a match if the
corresponding character position in string contains any uppercase letters in the
range A–Z. Multiple ranges are included within the brackets without delimiters.

 Other important rules for pattern matching include the following:

l An exclamation point (!) at the beginning of charlist means that a match is
made if any character except the characters in charlist is found in string.

l When used outside brackets, the exclamation point matches itself.

l A hyphen (–) can appear either at the beginning (after an exclamation point if
one is used) or at the end of charlist to match itself. In any other location, the
hyphen is used to identify a range of characters.

l When a range of characters is specified, they must appear in ascending sort
order (from lowest to highest). [A-Z] is a valid pattern, but [Z-A] is not.

l The character sequence [] is considered a zero-length string ("").

12-26 Chapter 12

 Methods
 The following sections describe the methods of the TagBrowser ActiveX control.

 GetCurrentAppPath
 You can use the GetCurrentAppPath method to set the AppPath property
automatically based on the last InTouch application that was edited in
WindowMaker or run in WindowViewer on the current computer.

 UpdateView
 Calling the UpdateView method will refresh the display, applying any changes to
the application path or filter properties that have been assigned since the last update.

 Events
 The following sections describe the events of the TagBrowser ActiveX control.

 ApplicationChanged
 This event is fired whenever the application path is changed, either
programmatically or via the user selecting a new application directory.

 DblClick
 This event is fired whenever the user double-clicks on the control.

 SelectionChanged
 This event is fired whenever the user selects a new tag in the control. The selected
tagname is passed as a parameter to this event. The selected tag (and other
properties) are also available via the SeletedTag, SelectedTagAccessName,
SelectedTagAlarmGroup, SelectedTagType, SelectedTagDescription, and
SelectedTagMode properties.

I-1

Index

.

.Ack, 12-14

.Alarm, 12-14

.AlarmDevDeadband, 12-14

.AlarmEnabled, 12-14

.AlarmValDeadband, 12-14

.Comment, 12-14

.DevTarget, 12-14

.EngUnits, 12-14

.HiHiLimit, 12-14

.HiHiSet, 12-14

.HiHiStatus, 12-14

.HiLimit, 12-14

.HiSet, 12-14

.HiStatus, 12-14

.LoLimit, 12-14

.LoLoLimit, 12-14

.LoLoSet, 12-14

.LoLoStatus, 12-14

.LoSet, 12-14

.LoStatus, 12-14

.MajorDevPct, 12-14

.MajorDevSet, 12-14

.MajorDevStatus, 12-15

.MaxEU, 12-15

.MaxRaw, 12-15

.MinEU, 12-15

.MinorDevPct, 12-15

.MinorDevSet, 12-15

.MinorDevStatus, 12-15

.MinRaw, 12-15

.Normal, 12-15

.OffMsg, 12-15

.OnMsg, 12-15

.Quality, 12-15

.QualityLimit, 12-15

.QualityLimitString, 12-15

.QualityStatus, 12-15

.QualityStatusString, 12-15

.QualitySubstatus, 12-15

.QualitySubstatusString, 12-15

.RawValue, 12-15

.Reference, 12-15

.ReferenceComplete, 12-15

.ROCPct, 12-15

.ROCSet, 12-15

.ROCStatus, 12-15

.SPCStatus, 12-15

.TagType, 12-15

.TimeDate, 12-15

.TimeDateString, 12-15

.TimeDateTime, 12-15

.TimeDay, 12-15

.TimeHour, 12-15

.TimeMinute, 12-16

.TimeMonth, 12-16

.TimeMSec, 12-16

.TimeSecond, 12-16

.TimeTime, 12-16

.TimeTimeString, 12-16

.TimeYear, 12-16

.Unack, 12-16

.Value, 12-16

A
About Property, 11-5, 11-6
Access Name, 3-12
Access Names

Creating, 3-12, 6-4
Finding, 3-12, 6-2
Unique Names, 3-12, 6-3

AccessName_Find, 3-12, 6-2
AccessName_FindApplTopic, 3-12, 6-2
AccessName_GetInfo, 3-12, 6-2
AccessName_GetName, 3-12, 6-3
AccessName_GetUniqueName, 3-12, 6-3
AccessName_New, 3-12, 6-4
AccessName_SetInfo, 3-12, 6-4
AccessName_SetName, 3-12, 6-5
AccessNameFilter Property, 12-20
ACCESSNAMEINFO, 7-2
AckStatusChanged Event, 12-6
AddWatch Method, 12-7
AlarmGroupFilter Property, 12-20
AlarmObj_New, 3-4, 6-6
AlarmStatusChanged Event, 12-6
AllowBrowsing Property, 12-21
AllowViewChanges Property, 12-21
AnlgAlarmLnk_New, 3-7, 6-8
AnlgColorLnk_New, 3-7, 6-11
AnlgInputLnk_New, 3-7, 6-12
AnlgOutputLnk_New, 3-7, 6-13
AnlgTag_GetInfo, 3-12, 6-13
AnlgTag_SetInfo, 3-12, 6-14
ANLGTAGINFO, 7-2
ApplicationChanged Event, 12-26
AppPath Property, 12-21
AutoRefresh Property, 12-22

B
BitmapObj_New, 3-4, 6-14
Bitmaps

I-2 Index

Wizard_GetInfo, 4-4
BlinkLnk_New, 3-7, 6-15
ButtonObj_New, 3-4, 6-16

C
C Module, 5-3

WZMAIN.C, 5-3
WZSTUB.C, 5-3

Color Boxes, 6-97
Command Wizards, 4-7
Company Name

WizardLib_GetInfo, 4-6
Components of a Wizard DLL, 2-3
Configurable Wizard

Building, 2-22
Configurable Wizard Diagram, 2-23
Creating Libraries with Multiple Wizards, 5-2

D
Database Functions, 3-11
Database Tag Functions, 3-11

AccessName_Find, 3-12
AccessName_FindApplTopic, 3-12
AccessName_GetInfo, 3-12
AccessName_GetName, 3-12
AccessName_GetUniqueName, 3-12
AccessName_New, 3-12
AccessName_SetInfo, 3-12
AccessName_SetName, 3-12
AnlgTag_GetInfo, 3-12
AnlgTag_SetInfo, 3-12
DiscTag_GetInfo, 3-12
DiscTag_SetInfo, 3-12
StrTag_SetInfo, 3-12
Tag_FindApplTopicItem, 3-11
Tag_GetAccessInfo, 3-11
Tag_GetGroup, 3-11
Tag_GetInfo, 3-11
Tag_GetRetentiveInfo, 3-11
Tag_GetUniqueName, 3-11
Tag_GetValueAlarm, 3-11
Tag_New, 3-11
Tag_SetAccessInfo, 3-11
Tag_SetDeviationAlarm, 3-11
Tag_SetDiscAlarm, 3-11
Tag_SetEventInfo, 3-11
Tag_SetGroup, 3-11
Tag_SetInfo, 3-11
Tag_SetRateOfChangeAlarm, 3-11
Tag_SetRetentiveInfo, 3-12
Tag_SetScalingInfo, 3-12
Tag_SetValueAlarm, 3-12

DataChange ActiveX Control
About, 12-5
Errors, 12-9

Events, 12-6
AckStatusChanged, 12-6
AlarmStatusChanged, 12-6
ValueChanged, 12-7

Methods
AddWatch, 12-7
RemoveWatch, 12-9

Methods, 12-7
DblClick Event, 12-26
Debugging

Using CodeView, 8-1
Definition .DEF File, 5-6
Description

Wizard_GetInfo, 4-4
DEVALARMINFO, 7-3
Dialog Controls, 2-31
Dialog Functions

WWDlg_CheckExprCtrl, 2-36
WWDlg_CheckTagCtrl, 2-36
WWDlg_GetDoubleCtrl, 2-36
WWDlg_ProcessKeyCtrl, 2-36
WWDlg_RegisterColorCtrl, 2-36
WWDlg_RegisterKeyCtrl, 2-36
WWDlg_RegisterTagnameCtrl, 2-36
WWDlg_ScriptEdit, 2-36
WWDlg_SetDoubleCtrl, 2-36
WWDlg_UnregisterColorCtrl, 2-36
WWDlg_UnregisterKeyCtrl, 2-37
WWDlg_UnregisterTagnameCtrl, 2-37

Dialog Procedure, 2-26
DisableLnk_New, 3-7, 6-17
DISCALARMINFO, 7-4
DiscAlarmLnk_New, 3-7, 6-18
DiscColorLnk_New, 3-7, 6-19
DiscInputLnk_New, 3-7, 6-20
DiscOutputLnk_New, 3-7, 6-22
DiscTag_GetInfo, 3-12, 6-22
DiscTag_SetInfo, 3-12, 6-23
DISCTAGINFO, 7-4
DiscTouchLnk_New, 3-7, 6-23
DLL Building, 2-17
DLL Functions

Wizard_Edit, 5-6
Wizard_GetInfo, 2-6, 5-6
Wizard_New, 2-6, 5-6
WizardLib_GetInfo, 2-6, 5-6

DLL Standard Functions, 3-2
DLLMain Function, 2-4
DllObj_New, 3-4, 6-25
Double-Click, 6-99

E
EllipseObj_New, 3-4, 6-26
Error Dialog Box, 11-12
Expressions, 6-94

Index I-3

F
Filter Expressions, 12-25
Flag Parameter, 9-5

Functionalities, 9-5
Flags, 9-5
Font_Scale, 3-6, 6-27
Fonts, 3-6, 6-27
Function Details

AccessName_Find, 6-2
AccessName_FindApplTopic, 6-2
AccessName_GetInfo, 6-2
AccessName_GetName, 6-3
AccessName_GetUniqueName, 6-3
AccessName_New, 6-4
AccessName_SetInfo, 6-4
AccessName_SetName, 6-5
AlarmObj_New, 6-6
AnlgAlarmLnk_New, 6-8
AnlgColorLnk_New, 6-11
AnlgInputLnk_New, 6-12
AnlgOutputLnk_New, 6-13
AnlgTag_GetInfo, 6-13
AnlgTag_SetInfo, 6-14
BitmapObj_New, 6-14
BlinkLnk_New, 6-15
ButtonObj_New, 6-16
DisableLnk_New, 6-17
DiscAlarmLnk_New, 6-18
DiscColorLnk_New, 6-19
DiscInputLnk_New, 6-20
DiscOutputLnk_New, 6-22
DiscTag_GetInfo, 6-22
DiscTag_SetInfo, 6-23
DiscTouchLnk_New, 6-23
DllObj_New, 6-25
EllipseObj_New, 6-26
Font_Scale, 6-27
GroupObj_New, 6-28
HistTrendObj_New, 6-29
LineObj_New, 6-31
LocationLnk_New, 6-32
Obj_Delete, 6-34
OrientationLnk_New, 6-35
PctFillLnk_New, 6-36
Point_Scale, 6-38
PointArray_Scale, 6-40
PointReal_Scale, 6-42
PointRealArray_Scale, 6-44
PolygonObj_New, 6-46
PolylineObj_New, 6-46
RealTrendObj_New, 6-47
Rect_Scale, 6-49
RectangleObj_New, 6-52
RectReal_Scale, 6-53
RRectangleObj_New, 6-56
SizeLnk_New, 6-57

SliderLnk_New, 6-59
Stmt_New, 6-61
StmtTouchLnk_New, 6-62
StrInputLnk_New, 6-63
StrOutputLnk_New, 6-64
StrTag_SetInfo, 6-65
SymbolObj_New, 6-65
Tag_Find, 6-66
Tag_FindApplTopicItem, 6-66
Tag_GetAccessInfo, 6-67
Tag_GetGroup, 6-67
Tag_GetInfo, 6-67
Tag_GetRetentiveInfo, 6-68
Tag_GetUniqueName, 6-68
Tag_GetValueAlarm, 6-68
Tag_New, 6-69
Tag_SetAccessInfo, 6-70
Tag_SetDeviationAlarm, 6-71
Tag_SetDiscAlarm, 6-71
Tag_SetEventInfo, 6-71
Tag_SetGroup, 6-72
Tag_SetInfo, 6-72
Tag_SetRateOfChangeAlarm, 6-72
Tag_SetRetentiveInfo, 6-73
Tag_SetScalingInfo, 6-73
Tag_SetValueAlarm, 6-73
Text_GetExtent, 6-74
TextObj_New, 6-75
TrendObj_SetItem, 6-76
TrendObj_SetTimeInfo, 6-77
TrendObj_SetValueInfo, 6-78
VisibilityLnk_New, 6-79
Wizard_DoCommand, 4-7
Wizard_Edit, 4-3
Wizard_GetInfo, 4-4
Wizard_New, 4-2
WizardLib_GetInfo, 4-6
WizardObj_New, 6-80
WizProp_Delete, 6-81
WizProp_Find, 6-81
WizProp_GetBlock, 6-82
WizProp_GetDouble, 6-83
WizProp_GetDWord, 6-84
WizProp_GetExpr, 6-85
WizProp_GetFont, 6-86
WizProp_GetStmt, 6-87
WizProp_GetString, 6-88
WizProp_New, 6-89
WizProp_SetBlock, 6-90
WizProp_SetDouble, 6-90
WizProp_SetDWord, 6-91
WizProp_SetExpr, 6-91
WizProp_SetFont, 6-92
WizProp_SetStmt, 6-93
WizProp_SetString, 6-93
WWDlg_CheckExprCtrl, 6-94
WWDlg_CheckTagCtrl, 6-95
WWDlg_GetDoubleCtrl, 6-96

I-4 Index

WWDlg_ProcessKeyCtrl, 6-96
WWDlg_RegisterColorCtrl, 6-97
WWDlg_RegisterKeyCtrl, 6-98
WWDlg_RegisterTagNameCtrl, 6-99
WWDlg_ScriptEdit, 6-99
WWDlg_SetDoubleCtrl, 6-100
WWDlg_UnregisterColorCtrl, 6-100
WWDlg_UnregisterKeyCtrl, 6-101
WWDlg_UnregisterTagNameCtrl, 6-102
WWKit_GetKeyStatus, 6-102
WWKit_GetLastError, 6-103
WWKit_GetSerialNumber, 6-104
WWKit_Init, 6-105
WWKit_SetBrush, 6-105
WWKit_SetFont, 6-105
WWKit_SetPen, 6-106
WWKit_SetTextBrush, 6-106
WWKit_SetTextPen, 6-106

Function Names, 5-3
Functions

Database Tag
AccessName_Find, 3-12, 6-2
AccessName_FindApplTopic, 3-12, 6-2
AccessName_GetInfo, 3-12, 6-2
AccessName_GetName, 3-12, 6-3
AccessName_GetUniqueName, 3-12, 6-3
AccessName_New, 3-12, 6-4
AccessName_SetInfo, 3-12, 6-4
AccessName_SetName, 3-12, 6-5
AnlgTag_GetInfo, 3-12, 6-13
AnlgTag_SetInfo, 3-12, 6-14
DiscTag_GetInfo, 3-12, 6-22
DiscTag_SetInfo, 3-12, 6-23
StrTag_SetInfo, 3-12, 6-65
Tag_Find, 3-11, 6-66
Tag_FindApplTopicItem, 3-11, 6-66
Tag_GetAccessInfo, 3-11, 6-67
Tag_GetGroup, 3-11, 6-67
Tag_GetInfo, 3-11, 6-67
Tag_GetRetentiveInfo, 3-11, 6-68
Tag_GetUniqueName, 3-11, 6-68
Tag_GetValueAlarm, 3-11, 6-68
Tag_New, 3-11, 6-69
Tag_SetAccessInfo, 3-11, 6-70
Tag_SetDeviationAlarm, 3-11, 6-71
Tag_SetDiscAlarm, 3-11, 6-71
Tag_SetEventInfo, 3-11, 6-71
Tag_SetGroup, 3-11, 6-72
Tag_SetInfo, 3-11, 6-72
Tag_SetRateOfChangeAlarm, 3-11, 6-72
Tag_SetRetentiveInfo, 3-12, 6-73
Tag_SetScalingInfo, 3-12, 6-73
Tag_SetValueAlarm, 3-12, 6-73

Dialogs
WWDlg_CheckExprCtrl, 2-36
WWDlg_CheckTagCtrl, 2-36
WWDlg_GetDoubleCtrl, 2-36
WWDlg_ProcessKeyCtrl, 2-36

WWDlg_RegisterColorCtrl, 2-36
WWDlg_RegisterKeyCtrl, 2-36
WWDlg_RegisterTagnameCtrl, 2-36
WWDlg_ScriptEdit, 2-36
WWDlg_SetDoubleCtrl, 2-36
WWDlg_UnregisterColorCtrl, 2-36
WWDlg_UnregisterKeyCtrl, 2-37
WWDlg_UnregisterTagnameCtrl, 2-37

DLL
Wizard_DoCommand, 3-2
Wizard_Edit, 2-24, 3-2
Wizard_GetInfo, 2-14, 3-2
Wizard_New, 3-2
WizardLib_GetInfo, 2-15, 3-2

DLLMain, 2-4
General

WWKit_GetKey Status, 6-102
WWKit_GetKeyStatus, 3-3
WWKit_GetLastError, 3-3, 6-103
WWKit_GetSerialNumber, 3-3, 6-104
WWKit_Init, 3-3, 6-105
WWKit_SetBrush, 3-3, 6-105
WWKit_SetFont, 3-3, 6-105
WWKit_SetPen, 3-3, 6-106
WWKit_SetTextBrush, 3-3, 6-106
WWKit_SetTextPen, 3-3, 6-106

Link
AnlgAlarmLnk_New, 3-7, 6-8
AnlgColorLnk_New, 3-7, 6-11
AnlgInputLnk_New, 3-7, 6-12
AnlgOutputLnk_New, 3-7, 6-13
BlinkLnk_New, 3-7, 6-15
DisableLnk_New, 3-7, 6-17
DiscAlarmLnk_New, 3-7, 6-18
DiscColorLnk_New, 3-7, 6-19
DiscInputLnk_New, 3-7, 6-20
DiscOutputLnk_New, 3-7, 6-22
DiscTouchLnk_New, 3-7, 6-23
LocationLnk_New, 3-7, 6-32
OrientationLnk_New, 3-7, 6-35
PctFillLnk_New, 3-7, 6-36
SizeLnk_New, 3-7, 6-57
SliderLnk_New, 3-7, 6-59
Stmt_New, 3-8, 6-61
StmtTouchLnk_New, 3-8, 6-62
StrInputLnk_New, 3-8, 6-63
StrOutputLnk_New, 3-8, 6-64
VisibilityLnk_New, 3-8, 6-79

Object
AlarmObj_New, 3-4, 6-6
BitmapObj_New, 3-4, 6-14
ButtonObj_New, 3-4, 6-16
DllObj_New, 3-4, 6-25
EllipseObj_New, 3-4, 6-26
GroupObj_New, 3-4, 6-28
HistTrendObj_New, 3-4, 6-29
LineObj_New, 3-4, 6-31
Obj_Delete, 3-5, 6-34

Index I-5

PolygonObj_New, 3-4, 6-46
PolylineObj_New, 3-4, 6-46
RealTrendObj_New, 3-4, 6-47
RectangleObj_New, 3-4, 6-52
RRectangleObj_New, 3-4, 6-56
SymbolObj_New, 3-5, 6-65
TextObj_New, 3-5, 6-75
TrendObj_SetItem, 3-5, 6-76
TrendObj_SetTimeInfo, 3-5, 6-77
TrendObj_SetValueInfo, 3-5, 6-78
WizardObj_New, 3-5, 6-80

User Interface
WWDlg_CheckExprCtrl, 3-10, 6-94
WWDlg_CheckTagCtrl, 3-10, 6-95
WWDlg_GetDoubleCtrl, 3-10, 6-96
WWDlg_ProcessKeyCtrl, 3-10, 6-96
WWDlg_RegisterColorCtrl, 3-10, 6-97
WWDlg_RegisterKeyCtrl, 3-10, 6-98
WWDlg_RegisterTagnameCtrl, 3-10, 6-99
WWDlg_ScriptEdit, 3-10, 6-99
WWDlg_SetDoubleCtrl, 3-10, 6-100
WWDlg_UnregisterColorCtrl, 3-10, 6-100
WWDlg_UnregisterKeyCtrl, 3-10, 6-101
WWDlg_UnregisterTagnameCtrl, 3-10,

6-102
Utility

Font_Scale, 3-6, 6-27
Point_Scale, 3-6, 6-38
PointArray_Scale, 3-6, 6-40
PointReal_Scale, 3-6, 6-42
PointRealArray_Scale, 3-6, 6-44
Rect_Scale, 3-6, 6-49
RectReal_Scale, 3-6, 6-53
Text_GetExtent, 3-6, 6-74

Wizard DLL
Standard Functions, 3-2

Wizard Property
WizProp_Delete, 3-8, 6-81
WizProp_Find, 3-8, 6-81
WizProp_GetBlock, 3-8, 6-82
WizProp_GetDouble, 3-8, 6-83
WizProp_GetDWord, 3-8, 6-84
WizProp_GetExpr, 3-8, 6-85
WizProp_GetFont, 3-9, 6-86
WizProp_GetStmt, 3-9, 6-87
WizProp_GetString, 3-9, 6-88
WizProp_New, 3-9, 6-89
WizProp_SetBlock, 3-9, 6-90
WizProp_SetDouble, 3-9, 6-90
WizProp_SetDWord, 3-9, 6-91
WizProp_SetExpr, 3-9, 6-91
WizProp_SetFont, 3-9, 6-92
WizProp_SetStmt, 3-9, 6-93
WizProp_SetString, 3-9, 6-93

Functions Required to Create and Configure
Wizards, 4-2

Functions Required to Integrate Wizards, 4-4

G
General Functions, 3-3

WWKit_GetKeyStatus, 3-3
WWKit_GetLastError, 3-3
WWKit_GetSerialNumber, 3-3
WWKit_Init, 3-3
WWKit_SetBrush, 3-3
WWKit_SetFont, 3-3
WWKit_SetPen, 3-3
WWKit_SetTextBrush, 3-3
WWKit_SetTextPen, 3-3

GetCurrentAppPath Method, 12-26
Getting Started with Script Functions

Toolkit, 9-2
Globals, 2-11
GroupObj_New, 3-4, 6-28

H
Hardware Requirements, 1-4
Header File, 5-4
Help File

Wizard_GetInfo, 4-4
Highlighting Replacement Values, 9-6
HistoricallyLoggedOnly Property, 12-22
HistTrendObj_New, 3-4, 6-29

I
IDEA Toolkit

Access ID Handles (ACCID), 10-6
Accessing Remote Tags, 10-13
Activating Variables, 10-7
Detecting InTouch Exits, 10-8
Differences Between 16 and 32-Bit

Compilers, 10-10
Function Reference, 10-26
Function Summary, 10-26

Data Read Functions, 10-26
Data Write Functions, 10-26
Initialization Functions, 10-26
Miscellaneous Functions, 10-27
Shutdown Functions, 10-27

Functional Description, 10-4
IDEA Programs in the Windows NT

Environment, 10-20
IDEA Toolkit

Running Toolkit Samples, 10-25
Installing for Microsoft C in a Windows NT

Environment, 10-24
InTouch Notification of Tag Changes, 10-21
InTouch Variable Types, 10-7
Point Handles (HPT), 10-6
Program Example, 10-14

Example #1, 10-14
Example #2, 10-15

I-6 Index

Example #3, 10-16
Example #4, 10-19
Example #5, 10-19

PtAccACCIDFromHPT, 10-28
PtAccActivate, 10-29
PtAccActivateAndNotify, 10-30
PtAccActivateAndNotify and

PtAccHandleActivateAndNotify, 10-21
PtAccActivateAndSendNotify, 10-31
PtAccActivateAndSendNotify and

PtAccHandleActivateAndSndNotify, 10-22
PtAccDeactivate, 10-32
PtAccDelete, 10-32
PtAccGetExtraInt, 10-33
PtAccGetExtraLong, 10-34
PtAccHandleActivate, 10-35
PtAccHandleActivateAndNotify, 10-36
PtAccHandleActivateAndSndNotify, 10-37
PtAccHandleCreate, 10-38
PtAccHandleDeactivate, 10-39
PtAccHandleDelete, 10-39
PtAccInit, 10-6, 10-40
PtAccOK, 10-41
PtAccReadA, 10-41
PtAccReadD, 10-42
PtAccReadI, 10-43
PtAccReadM, 10-44
PtAccReadR, 10-45
PtAccSetExtraInt, 10-46
PtAccSetExtraLong, 10-47
PtAccShutdown, 10-48
PtAccShutdownAllAssociated, 10-48
PtAccType, 10-49
PtAccWriteA, 10-50
PtAccWriteD, 10-51
PtAccWriteI, 10-52
PtAccWriteM, 10-53
PtAccWriteR, 10-54
Reading InTouch

Five Functions, 10-8
Reading InTouch Variables, 10-8
Requirements, 10-2
Special Data Types, 10-5
Storing and Retrieving Information, 10-9
Storing Program Data With Each HPT, 10-9
Summary of IDEA Options & Requirements,

10-2
Tag Handles and Memory Usage, 10-11
Toolkit Contents, 10-3
Use of Environment Variables, 10-23
Variable

In Use, 10-7
Visual Basic 5.0 32-Bit Sample, 10-25
Windows C ++ Simple Sample, 10-25
Windows C Complex Sample, 10-25
Windows C Simple Sample, 10-25
Writing InTouch Variables, 10-8
Writing to InTouch

Five Functions, 10-8
Information Command

WIZ_BITMAP, 2-5
WIZ_DESCRIPTION, 2-5
WIZ_FLAGS, 2-5
WIZ_GROUPNAME, 2-5
WIZ_TBOXBITMAP, 2-5

Installing for Microsoft C in a Windows NT
Environment, 10-24

Installing ITEdit.OCX, 11-3
Installing the InTouch Extensibility Toolkit, 1-4
Installing the Wizard in WindowMaker, 2-17
Installing Your Script Extensions, 9-7
Integrating, 2-12
Integrating Wizards into InTouch, 4-4
InTouch Database External Access (IDEA)

Toolkit, 10-1
InTouch Script Functions (Toolkit), 9-1
ITActivationMode Property, 11-6
ITDataIsValid Property, 11-9
ITEdit.OCX

Configuring, 11-3
Custom Properties, 11-6
Error Dialog Box, 11-12
ITDataIsValid Property, 11-9
ITEdit Properties, 11-5
ITFormat Property, 11-9
ITNotifyQuality Event, 11-11
ITNotifyValue Event, 11-11
ITOffMessage Property, 11-9
ITOnMessage Property, 11-9
ITRunning Property, 11-9
ITTagName Property, 11-10
ITTagType Property, 11-10
ITValue Property, 11-10
ITValueQuality Property, 11-10
Overview ITEdit.OCX, 11-2
Properties List, 11-5
Registering ITEdit.OCX, 11-2
Stock Properties, 11-5

ITEdit.OCX ITActivationMode Property, 11-6
ITFormat Property, 11-9
ITNotifyQuality Event, 11-11
ITNotifyValue Event, 11-11
ITOffMessage Property, 11-9
ITOnMessage Property, 11-9
ITRunning Property, 11-9
ITTagName Property, 11-10
ITTagType Property, 11-10
ITValue Property, 11-10
ITValueQuality Property, 11-10

K
Key Equivalents, 6-98

Index I-7

L
LineObj_New, 3-4, 6-31
Link Functions, 3-7

AnlgAlarmLnk_New, 3-7
AnlgColorLnk_New, 3-7
AnlgInputLnk_New, 3-7
AnlgOutputLnk_New, 3-7
BlinkLnk_New, 3-7
DisableLnk_New, 3-7
DiscAlarmLnk_New, 3-7
DiscColorLnk_New, 3-7
DiscInputLnk_New, 3-7
DiscOutputLnk_New, 3-7
DiscTouchLnk_New, 3-7
LocationLnk_New, 3-7
OrientationLnk_New, 3-7
PctFillLnk_New, 3-7
SizeLnk_New, 3-7
SliderLnk_New, 3-7
Stmt_New, 3-8
StmtTouchLnk_New, 3-8
StrInputLnk_New, 3-8
StrOutputLnk_New, 3-8
VisibilityLnk_New, 3-8

LocationLnk_New, 3-7, 6-32
LogEventsOnly Property, 12-22

M
Manipulates

Existing Window Objects, 3-5
Object Links, 3-8

Mode
EDIT, 2-5
NEW, 2-5
RESTORE, 2-5
SIZE, 2-5

Multiple Wizards Libraries
Creating, 2-19

N
Naming Conventions, 2-21

Basic, 5-1

O
Obj_Delete, 3-5, 6-34
Object Functions, 3-4

AlarmObj_New, 3-4
BitmapObj_New, 3-4
ButtonObj_New, 3-4
DllObj_New, 3-4
EllipseObj_New, 3-4
GroupObj_New, 3-4
HistTrendObj_New, 3-4
LineObj_New, 3-4

Obj_Delete, 3-5
PolygonObj_New, 3-4
PolylineObj_New, 3-4
RealTrendObj_New, 3-4
RectangleObj_New, 3-4
RRectangleObj_New, 3-4
SymbolObj_New, 3-5
TextObj_New, 3-5
TrendObj_SetItem, 3-5
TrendObj_SetTimeInfo, 3-5
TrendObj_SetValueInfo, 3-5
WizardObj_New, 3-5

OrientationLnk_New, 3-7, 6-35

P
Pasting Functions and Arguments, 9-6
PctFillLnk_New, 3-7, 6-36
Point_Scale, 3-6, 6-38
PointArray_Scale, 3-6, 6-40
PointReal_Scale, 3-6, 6-42
PointRealArray_Scale, 3-6, 6-44
PolygonObj_New, 3-4, 6-46
PolylineObj_New, 3-4, 6-46
Property Functions, 3-8
Property Names, 2-25
prototyping, 2-8
PtAccACCIDFromHPT, 10-28
PtAccActivate, 10-29
PtAccActivateAndNotify, 10-30
PtAccActivateAndSendNotify, 10-31
PtAccDeactivate, 10-32
PtAccDelete, 10-32
PtAccGetExtraInt, 10-33
PtAccGetExtraLong, 10-34
PtAccHandleActivate, 10-35
PtAccHandleActivateAndNotify, 10-36
PtAccHandleActivateAndSndNotify, 10-37
PtAccHandleCreate, 10-38
PtAccHandleDeactivate, 10-39
PtAccHandleDelete, 10-39
PtAccInit, 10-40
PtAccOK, 10-41
PtAccReadA, 10-41
PtAccReadD, 10-42
PtAccReadI, 10-43
PtAccReadM, 10-44
PtAccReadR, 10-45
PtAccSetExtraInt, 10-46
PtAccSetExtraLong, 10-47
PtAccShutdown, 10-48
PtAccShutdownAllAssociated, 10-48
PtAccType, 10-49
PtAccWriteA, 10-50
PtAccWriteD, 10-51

I-8 Index

PtAccWriteI, 10-52
PtAccWriteM, 10-53
PtAccWriteR, 10-54

R
RealTrendObj_New, 3-4, 6-47
Rect_Scale, 3-6, 6-49
RectangleObj_New, 3-4, 6-52
RectReal_Scale, 3-6, 6-53
RemoveWatch Method, 12-9
Requirements, 1-5
Resource .RC File, 5-6
RetentiveOnly Property, 12-22
ROCALARMINFO, 7-5
RRectangleObj_New, 3-4, 6-56

S
Samples

IDEA Toolkit, 10-25
Visual Basic 5.0, 10-25
Windows C, 10-25
Windows C ++ Simple Sample, 10-25
Windows C Complex, 10-25

Scaling
Fonts, 3-6, 6-27
Points, 3-6, 6-38
Rects, 3-6, 6-49

Scaling Functions, 3-6
Script Editor, 6-99
Script Functions Toolkit, 9-1

Combining Scripts with IDEA, 9-9
Def File Example, 9-8
Flag Parameter, 9-5
Function Help String, 9-6
Getting Started, 9-2
Highlighting Replacement Values, 9-6
Installing Your Script Extensions, 9-7
Parameter Functionalities, 9-5
Pasting Functions and Arguments, 9-6
RC file Example, 9-9
Sample Script, 9-7
Special Flag Considerations, 9-5

Script Functions Toolkit Functionality
Functions List, 9-2

Scripts Functions Toolkit
.WDF File, 9-2
Flags, 9-5
IDF file Example, 9-9

SelectedTag Property, 12-22
SelectedTagAccessName Property, 12-22
SelectedTagAlarmGroup Property, 12-22
SelectedTagDescription Property, 12-22
SelectedTagMode Property, 12-22
SelectedTagType Property, 12-23

SelectionChanged Event, 12-26
Sending Debug Messages to the Wonderware

Logger, 8-8
ShowAccessNames Property, 12-23
ShowAppPath Property, 12-23
Simple Wizard

.DEF File, 2-7

.RC File, 2-17
Building, 2-8

SizeLnk_New, 3-7, 6-57
Sizing

Wizard_GetInfo, 4-4
SliderLnk_New, 3-7, 6-59
Software Requirements, 1-4
Special Dialog Controls, 2-31
Special Wizard Tests, 8-7

Steps to Follow, 8-7
Specific Requirements, 1-5
Statements, 3-8, 6-61
Stmt_New, 6-61
StmtTouchLnk_New, 3-8, 6-62
STRINGTABLE

Wizard Description, 5-7
StrInputLnk_New, 3-8, 6-63
StrOutputLnk_New, 3-8, 6-64
StrTag_SetInfo, 3-12, 6-65
STRTAGINFO, 7-5
Structure Details

ACCESSNAMEINFO, 7-2
ANLGTAGINFO, 7-2
DEVALARMINFO, 7-3
DISCALARMINFO, 7-4
DISCTAGINFO, 7-4
ROCALARMINFO, 7-5
STRTAGINFO, 7-5
TAGACCESSINFO, 7-6
TAGEVENTINFO, 7-6
TAGINFO, 7-7
TAGRETENTIVEINFO, 7-7
TAGSCALEINFO, 7-8
VALALARMINFO, 7-9

SymbolObj_New, 3-5, 6-65

T
Tag Access

About, 12-2
Combining the DataChange Control and

TagLink Object, 12-18
DataChange ActiveX Control

About, 12-5
Errors, 12-9
Events, 12-6

AckStatusChanged, 12-6
AlarmStatusChanged, 12-6
ValueChanged, 12-7

Index I-9

Methods, 12-7
AddWatch, 12-7
RemoveWatch, 12-9

Deployment Information, 12-4
Sample Applications, 12-17
TagBrowser ActiveX Control

About, 12-20
Events, 12-26

ApplicationChanged, 12-26
DblClick, 12-26
SelectionChanged, 12-26

Methods, 12-26
GetCurrentAppPath, 12-26
UpdateView, 12-26

Properties, 12-20
AccessNameFilter, 12-20
AlarmGroupFilter, 12-20
AllowBrowsing, 12-21
AllowViewChanges, 12-21
AppPath, 12-21
AutoRefresh, 12-22
HistoricallyLoggedOnly, 12-22
LogEventsOnly, 12-22
RetentiveOnly, 12-22
SelectedTag, 12-22
SelectedTagAccessName, 12-22
SelectedTagAlarmGroup, 12-22
SelectedTagDescription, 12-22
SelectedTagMode, 12-22
SelectedTagType, 12-23
ShowAccessNames, 12-23
ShowAppPath, 12-23
TagNameFilter, 12-23
TagTypeFilter, 12-23

TagLink Object
About, 12-10
Dot Field Properties, 12-14
Errors, 12-17
Properties, 12-11

TagName, 12-11
TagType, 12-13
Valid, 12-13

Tag Functions, 3-11
Tag Types, 12-24
Tag_Find, 3-11, 6-66
Tag_FindApplTopicItem, 3-11, 6-66
Tag_GetAccessInfo, 3-11, 6-67
Tag_GetGroup, 3-11, 6-67
Tag_GetInfo, 3-11, 6-67
Tag_GetRetentiveInfo, 3-11, 6-68
Tag_GetUniqueName, 3-11, 6-68
Tag_GetValueAlarm, 3-11, 6-68
Tag_New, 3-11, 6-69
Tag_SetAccessInfo, 3-11, 6-70
Tag_SetDeviationAlarm, 3-11, 6-71
Tag_SetDiscAlarm, 3-11, 6-71

Tag_SetEventInfo, 3-11, 6-71
Tag_SetGroup, 3-11, 6-72
Tag_SetInfo, 3-11, 6-72
Tag_SetRateOfChangeAlarm, 3-11, 6-72
Tag_SetRetentiveInfo, 3-12, 6-73
Tag_SetScalingInfo, 3-12, 6-73
Tag_SetValueAlarm, 3-12, 6-73
TAGACCESSINFO, 7-6
TagBrowser ActiveX Control

About, 12-20
Events

ApplicationChanged, 12-26
DblClick, 12-26
SelectionChanged, 12-26

Events, 12-26
Methods, 12-26

GetCurrentAppPath, 12-26
UpdateView, 12-26

Properties, 12-20
AccessNameFilter, 12-20
AlarmGroupFilter, 12-20
AllowBrowsing, 12-21
AllowViewChanges, 12-21
AppPath, 12-21
AutoRefresh, 12-22
HistoricallyLoggedOnly, 12-22
LogEventsOnly, 12-22
RetentiveOnly, 12-22
SelectedTag, 12-22
SelectedTagAccessName, 12-22
SelectedTagAlarmGroup, 12-22
SelectedTagDescription, 12-22
SelectedTagMode, 12-22
SelectedTagType, 12-23
ShowAccessNames, 12-23
ShowAppPath, 12-23
TagNameFilter, 12-23
TagTypeFilter, 12-23

TAGEVENTINFO, 7-6
TAGINFO, 7-7
TagLink ActiveX Object

About, 12-10
Dot Field Properties, 12-14
Properties, 12-11

Tagname, 12-11
TagType, 12-13
Valid, 12-13

TagLink Object
Errors, 12-17

Tagname Property, 12-11
TagNameFilter Property, 12-23
TAGRETENTIVEINFO, 7-7
Tags

Creating, 3-11, 6-69
Finding, 3-11, 6-66
Unique Names, 3-11, 6-68

I-10 Index

TAGSCALEINFO, 7-8
TagType Property, 12-13
TagTypeFilter Property, 12-23
Testing

A Newly Installed Wizard, 8-2
Testing Toolbox Operations, 8-6

Steps to Follow, 8-6
Testing Toolbox Operations on a Wizard, 8-6
Testing Wizard

Sizing, 8-3
Testing Wizard Configurations, 8-5
Testing Wizard Editing Capabilities, 8-4
Testing Wizard Sizing, 8-3
Testing Wizards

Steps to check for proper install., 8-2
Text_GetExtent, 3-6, 6-74
TextObj_New, 3-5, 6-75
Toolbox

Wizard_GetInfo, 4-4
Toolkit Dialog Functions, 2-36
TrendObj_SetItem, 3-5, 6-76
TrendObj_SetTimeInfo, 3-5, 6-77
TrendObj_SetValueInfo, 3-5, 6-78

U
UpdateView Method, 12-26
User Interface Functions, 3-10

WWDlg_CheckExprCtrl, 3-10
WWDlg_CheckTagCtrl, 3-10
WWDlg_GetDoubleCtrl, 3-10
WWDlg_ProcessKeyCtrl, 3-10
WWDlg_RegisterColorCtrl, 3-10
WWDlg_RegisterKeyCtrl, 3-10
WWDlg_RegisterTagnameCtrl, 3-10
WWDlg_ScriptEdit, 3-10
WWDlg_UnregisterColorCtrl, 3-10
WWDlg_UnregisterKeyCtrl, 3-10
WWDlg_UnregisterTagnameCtrl, 3-10

User Supplied Functions, 4-1
User Supplied Required Functions, 4-4
User Supplied Wizards

Configure, 4-2
Creating, 4-2
Wizard_DoCommand, 4-7
Wizard_Edit, 4-3
Wizard_Edit must be supplied, 4-2
Wizard_GetInfo, 4-4
Wizard_GetInfo must be supplied, 4-4
Wizard_New, 4-2
Wizard_New must be supplied, 4-2
WizardLib_GetInfo, 4-6
WizardLib_GetInfo must be supplied, 4-4

Using CodeView to Debug the Wizard DLL, 8-9
Using Visual C++ to Debug, 8-10
Utility Functions, 3-6

Font_Scale, 3-6
Point Array_Scale, 3-6
Point_Scale, 3-6
PointReal_Scale, 3-6
PointRealArray_Scale, 3-6
Rect_Scale, 3-6
RectReal_Scale, 3-6
Text_GetExtent, 3-6

V
VALALARMINFO, 7-9
Valid Property, 12-13
ValueChanged Event, 12-7
Version Number

WizardLib_GetInfo, 4-6
VisibilityLnk_New, 3-8, 6-79

W
Windows 98 and Windows NT Compatibility,

1-4
WIZ_BITMAP, 2-5
WIZ_BITMAP, 4-4
WIZ_COMPANYNAME

WizardLib_GetInfo, 4-6
WIZ_DESCRIPTION, 2-5

Wizard_GetInfo, 4-4
WIZ_FLAGS, 2-5

Wizard_GetInfo, 4-4
WIZ_GROUPNAME, 2-5

Wizard_GetInfo, 4-4
WIZ_HELPINFO

Wizard_GetInfo, 4-4
WIZ_LIBNAME

WizardLib_GetInfo, 4-6
WIZ_NEXTWIZID

WizardLib_GetInfo, 4-6
WIZ_SIZEMODE

Wizard_GetInfo, 4-4
WIZ_TBOXBITMAP, 2-5

Wizard_GetInfo, 4-4
WIZ_VERSIONNUM

WizardLib_GetInfo, 4-6
WIZ_VERSIONSTR

WizardLib_GetInfo, 4-6
Wizard

.DEF File, 5-6

.RC File, 5-6
Building a Configurable Wizard, 2-22
Building a Simple Wizard, 2-8
Building DLL, 2-17
Creating Libraries with Multiple Wizards,

2-19
description, 2-2
Dialog Proc, 2-26
DLLMain, 2-4

Index I-11

Globals, 2-11
Installing in WindowMaker, 2-17
Integrating into WindowMaker, 2-12
Naming Conventions, 2-21
Property Names, 2-25
Special Dialog Controls, 2-31
Toolkit Dialog Functions, 2-36
WIZARD.C File, 2-9
Wizard_Edit, 2-24
Wizard_GetInfo, 2-14
WizardLib_GetInfo, 2-15

Wizard API Functions, 2-36, 3-3
AccessName_Find, 6-2
AccessName_FindApplTopic, 6-2
AccessName_GetInfo, 6-2
AccessName_GetName, 6-3
AccessName_GetUniqueName, 6-3
AccessName_New, 6-4
AccessName_SetInfo, 6-4
AccessName_SetName, 6-5
AlarmObj_New, 6-6
AnlgAlarmLnk_New, 6-8
AnlgColorLnk_New, 6-11
AnlgInputLnk_New, 6-12
AnlgOutputLnk_New, 6-13
AnlgTag_GetInfo, 6-13
AnlgTag_SetInfo, 6-14
BitmapObj_New, 6-14
BlinkLnk_New, 6-15
ButtonObj_New, 6-16
Database Tag Functions, 3-11

AccessName_Find, 3-12
AccessName_FindApplTopic, 3-12
AccessName_GetInfo, 3-12
AccessName_GetName, 3-12
AccessName_GetUniqueName, 3-12
AccessName_New, 3-12
AccessName_SetInfo, 3-12
AccessName_SetName, 3-12
AnlgTag_GetInfo, 3-12
AnlgTag_SetInfo, 3-12
DiscTag_GetInfo, 3-12
DiscTag_SetInfo, 3-12
StrTag_SetInfo, 3-12
Tag_Find, 3-11
Tag_FindApplTopicItem, 3-11
Tag_GetAccessInfo, 3-11
Tag_GetGroup, 3-11
Tag_GetInfo, 3-11
Tag_GetRetentiveInfo, 3-11
Tag_GetUniqueName, 3-11
Tag_GetValueAlarm, 3-11
Tag_New, 3-11
Tag_SetAccessInfo, 3-11
Tag_SetDeviationAlarm, 3-11
Tag_SetDiscAlarm, 3-11
Tag_SetEventInfo, 3-11
Tag_SetGroup, 3-11

Tag_SetInfo, 3-11
Tag_SetRateOfChangeAlarm, 3-11
Tag_SetRetentiveInfo, 3-12
Tag_SetScalingInfo, 3-12
Tag_SetValueAlarm, 3-12

DisableLnk_New, 6-17
DiscAlarmLnk_New, 6-18
DiscColorLnk_New, 6-19
DiscInputLnk_New, 6-20
DiscOutputLnk_New, 6-22
DiscTag_GetInfo, 6-22
DiscTag_SetInfo, 6-23
DiscTouchLnk_New, 6-23
DllObj_New, 6-25
EllipseObj_New, 6-26
Font_Scale, 6-27
General Functions, 3-3

WWKit_GetKeyStatus, 3-3
WWKit_GetLastError, 3-3
WWKit_GetSerialNumber, 3-3
WWKit_Init, 3-3
WWKit_SetBrush, 3-3
WWKit_SetFont, 3-3
WWKit_SetPen, 3-3
WWKit_SetTextBrush, 3-3
WWKit_SetTextPen, 3-3

GroupObj_New, 6-28
HistTrendObj_New, 6-29
LineObj_New, 6-31
Link Functions, 3-7

AnlgAlarmLnk_New, 3-7
AnlgColorLnk_New, 3-7
AnlgInputLnk_New, 3-7
AnlgOutputLnk_New, 3-7
BlinkLnk_New, 3-7
DisableLnk_New, 3-7
DiscAlarmLnk_New, 3-7
DiscColorLnk_New, 3-7
DiscInputLnk_New, 3-7
DiscOutputLnk_New, 3-7
DiscTouchLnk_New, 3-7
LocationLnk_New, 3-7
OrientationLnk_New, 3-7
PctFillLnk_New, 3-7
SizeLnk_New, 3-7
SliderLnk_New, 3-7
Stmt_New, 3-8
StmtTouchLnk_New, 3-8
StrInputLnk_New, 3-8
StrOutputLnk_New, 3-8
VisibilityLnk_New, 3-8

LocationLnk_New, 6-32
Obj_Delete, 6-34
Object Functions, 3-3

AlarmObj_New, 3-4
BitmapObj_New, 3-4
ButtonObj_New, 3-4
DllObj_New, 3-4

I-12 Index

ElllipseObj_New, 3-4
GroupObj_New, 3-4
HistTrendObj_New, 3-4
LineObj_New, 3-4
Obj_Delete, 3-5
PolygonObj_New, 3-4
PolylineObj_New, 3-4
RealTrendObj_New, 3-4
RectangleObj_New, 3-4
RRectangleObj_New, 3-4
SymbolObj_New, 3-5
TextObj_New, 3-5
TrendObj_SetItem, 3-5
TrendObj_SetTimeInfo, 3-5
TrendObj_SetValueInfo, 3-5
WizardObj_New, 3-5

OrientationLnk_New, 6-35
PctFillLnk_New, 6-36
Point_Scale, 6-38
PointArray_Scale, 6-40
PointReal_Scale, 6-42
PointRealArray_Scale, 6-44
PolygonObj_New, 6-46
PolylineObj_New, 6-46
RealTrendObj_New, 6-47
Rect_Scale, 6-49
RectangleObj_New, 6-52
RectReal_Scale, 6-53
RRectangleObj_New, 6-56
SizeLnk_New, 6-57
SliderLnk_New, 6-59
Stmt_New, 6-61
StmtTouchLnk_New, 6-62
StrInputLnk_New, 6-63
StrOutputLnk_New, 6-64
StrTag_SetInfo, 6-65
SymbolObj_New, 6-65
Tag_Find, 6-66
Tag_FindApplTopicItem, 6-66
Tag_GetAccessInfo, 6-67
Tag_GetGroup, 6-67
Tag_GetInfo, 6-67
Tag_GetRetentiveInfo, 6-68
Tag_GetUniqueName, 6-68
Tag_GetValueAlarm, 6-68
Tag_New, 6-69
Tag_SetAccessInfo, 6-70
Tag_SetDeviationAlarm, 6-71
Tag_SetDiscAlarm, 6-71
Tag_SetEventInfo, 6-71
Tag_SetGroup, 6-72
Tag_SetInfo, 6-72
Tag_SetRateOfChangeAlarm, 6-72
Tag_SetRetentiveInfo, 6-73
Tag_SetScalingInfo, 6-73
Tag_SetValueAlarm, 6-73
Text_GetExtent, 6-74
TextObj_New, 6-75

TrendObj_SetItem, 6-76
TrendObj_SetTimeInfo, 6-77
TrendObj_SetValueInfo, 6-78
User Interface Functions, 3-10

WWDlg_CheckExprCtrl, 3-10
WWDlg_CheckTagCtrl, 3-10
WWDlg_GetDoubleCtrl, 3-10
WWDlg_ProcessKeyCtrl, 3-10
WWDlg_RegisterColorCtrl, 3-10
WWDlg_RegisterKeyCtrl, 3-10
WWDlg_RegisterTagnameCtrl, 3-10
WWDlg_ScriptEdit, 3-10
WWDlg_UnregisterColorCtrl, 3-10
WWDlg_UnregisterKeyCtrl, 3-10
WWDlg_UnregisterTagnameCtrl, 3-10

Utility Functions, 3-6
Font_Scale, 3-6
Point_Scale, 3-6
PointArray_Scale, 3-6
PointReal_Scale, 3-6
PointRealArray_Scale, 3-6
Rect_Scale, 3-6
Text_GetExtent, 3-6

VisibilityLnk_New, 6-79
Wizard Property Functions, 3-8

WizProp_Delete, 3-8
WizProp_Find, 3-8
WizProp_GetBlock, 3-8
WizProp_GetDouble, 3-8
WizProp_GetDWord, 3-8
WizProp_GetExpr, 3-8
WizProp_GetFont, 3-9
WizProp_GetStmt, 3-9
WizProp_GetString, 3-9
WizProp_New, 3-9
WizProp_SetBlock, 3-9
WizProp_SetDouble, 3-9
WizProp_SetDWord, 3-9
WizProp_SetExpr, 3-9
WizProp_SetFont, 3-9
WizProp_SetStmt, 3-9
WizProp_SetString, 3-9

WizardObj_New, 6-80
WizProp_Delete, 6-81
WizProp_Find, 6-81
WizProp_GetBlock, 6-82
WizProp_GetDouble, 6-83
WizProp_GetDWord, 6-84
WizProp_GetExpr, 6-85
WizProp_GetFont, 6-86
WizProp_GetStmt, 6-87
WizProp_GetString, 6-88
WizProp_New, 6-89
WizProp_SetBlock, 6-90
WizProp_SetDouble, 6-90
WizProp_SetDWord, 6-91
WizProp_SetExpr, 6-91
WizProp_SetFont, 6-92

Index I-13

WizProp_SetStmt, 6-93
WizProp_SetString, 6-93
WWDlg_CheckExprCtrl, 6-94
WWDlg_CheckTagCtrl, 6-95
WWDlg_GetDoubleCtrl, 6-96
WWDlg_ProcessKeyCtrl, 6-96
WWDlg_RegisterColorCtrl, 6-97
WWDlg_RegisterKeyCtrl, 6-98
WWDlg_RegisterTagNameCtrl, 6-99
WWDlg_ScriptEdit, 6-99
WWDlg_SetDoubleCtrl, 6-100
WWDlg_UnregisterColorCtrl, 6-100
WWDlg_UnregisterKeyCtrl, 6-101
WWDlg_UnregisterTagNameCtrl, 6-102
WWKit_GetKeyStatus, 6-102
WWKit_GetLastError, 6-103
WWKit_GetSerialNumber, 6-104
WWKit_Init, 6-105
WWKit_SetBrush, 6-105
WWKit_SetFont, 6-105
WWKit_SetPen, 6-106
WWKit_SetTextBrush, 6-106
WWKit_SetTextPen, 6-106

Wizard API Structures
ACCESSNAMEINFO, 7-2
ANLGTAGINFO, 7-2
DEVALARMINFO, 7-3
DISCALARMINFO, 7-4
DISCTAGINFO, 7-4
ROCALARMINFO, 7-5
STRTAGINFO, 7-5
TAGACCESSINFO, 7-6
TAGEVENTINFO, 7-6
TAGINFO, 7-7
TAGRETENTIVEINFO, 7-7
TAGSCALEINFO, 7-8
VALALARMINFO, 7-9

Wizard Basics, 2-5
Wizard C Modules, 5-3
Wizard Configuration Testing, 8-5
Wizard Debbugging

Debugging a Wizard DLL, 8-9
Wizard Debugging

Sending Messages to Wonderware Logger,
8-8

Using CodeView, 8-9
Using Visual C++, 8-10

Steps to Follow, 8-10
Wizard Description

STRINGTABLE, 5-7
Wizard DLL Components, 2-3
Wizard DLL Standard Functions, 3-2
Wizard Editing, 8-4
Wizard Editing Capability

Steps to Follow, 8-4
Wizard Group

Wizard_GetInfo, 4-4

Wizard Installation, 2-17
Wizard Library Development, 5-2

Guidlines, 5-2
Wizard Library Directory, 5-2
Wizard Library File

Function Names, 5-3
Header File, 5-4
Wizard C Modules, 5-3
WIZMAIN.C, 5-3

Wizard Naming Conventions, 5-1
Wizard Property Functions, 3-8

WizProp_Delete, 3-8
WizProp_Find, 3-8
WizProp_GetBlock, 3-8
WizProp_GetDouble, 3-8
WizProp_GetDWord, 3-8
WizProp_GetExpr, 3-8
WizProp_GetFont, 3-9
WizProp_GetStmt, 3-9
WizProp_GetString, 3-9
WizProp_New, 3-9
WizProp_SetBlock, 3-9
WizProp_SetDouble, 3-9
WizProp_SetDWord, 3-9
WizProp_SetExpr, 3-9
WizProp_SetFont, 3-9
WizProp_SetStmt, 3-9
WizProp_SetString, 3-9

Wizard Sizing Steps, 8-3
Wizard Testing

Configuration, 8-5
Editing Capability, 8-4
Newly Installed, 8-2
Sizing, 8-3
Special Wizard Tests, 8-7
Toolbox Operations, 8-6

Wizard Testing Guidelines, 8-2
Wizard Toolkit

WZMAIN.C, 5-3
Wizard Toolkit API Structures, 7-1
Wizard Toolkit Application Programming

Interface, 6-1
WIZARD.C File, 2-9
WIZARD.DEF, 2-3
WIZARD.RC, 2-3
Wizard_DoCommand, 3-2, 4-7

Parameters, 4-7
Wizard_Edit, 2-24, 3-2, 4-3

Parameters, 4-3
Wizard_GetInfo, 2-6, 2-12, 2-14, 3-2, 4-4

Commands, 2-13
Parameters, 2-12, 4-4

Wizard_GetLibInfo, 2-12
Commands, 2-12

Wizard_New, 2-6, 3-2, 4-2
Parameters, 4-2

I-14 Index

WizardLib_GetInfo, 2-6, 2-15, 3-2, 4-6
Commands, 2-15
Parameters, 2-15, 4-6

WizardObj_New, 3-5, 6-80
WizProp_Delete, 3-8, 6-81
WizProp_Find, 3-8, 6-81
WizProp_GetBlock, 3-8, 6-82
WizProp_GetDouble, 3-8, 6-83
WizProp_GetDWord, 3-8, 6-84
WizProp_GetExpr, 3-8, 6-85
WizProp_GetFont, 3-9, 6-86
WizProp_GetStmt, 3-9, 6-87
WizProp_GetString, 3-9, 6-88
WizProp_New, 3-9, 6-89
WizProp_SetBlock, 3-9, 6-90
WizProp_SetDouble, 3-9, 6-90
WizProp_SetDWord, 3-9, 6-91
WizProp_SetExpr, 3-9, 6-91
WizProp_SetFont, 3-9, 6-92
WizProp_SetStmt, 3-9, 6-93
WizProp_SetString, 3-9, 6-93
Wonderware Logger

Using Wonderware Logger to Debug, 8-8
WWDlg_CheckExprCtrl, 3-10, 6-94
WWDlg_CheckTagCtrl, 3-10, 6-95
WWDlg_GetDoubleCtrl, 3-10, 6-96
WWDlg_ProcessKeyCtrl, 3-10, 6-96
WWDlg_RegisterColorCtrl, 3-10, 6-97
WWDlg_RegisterKeyCtrl, 3-10, 6-98
WWDlg_RegisterTagnameCtrl, 3-10, 6-99
WWDlg_ScriptEdit, 3-10, 6-99
WWDlg_SetDoubleCtrl, 3-10, 6-100
WWDlg_UnregisterColorCtrl, 3-10, 6-100
WWDlg_UnregisterKeyCtrl, 3-10, 6-101
WWDlg_UnregisterTagnameCtrl, 3-10, 6-102
WWKit_GetKeyStatus, 3-3, 6-102
WWKit_GetLastError, 3-3, 6-103
WWKit_GetSerialNumber, 3-3, 6-104
WWKit_Init, 3-3, 6-105
WWKit_SetBrush, 3-3, 6-105
WWKit_SetFont, 3-3, 6-105
WWKit_SetPen, 3-3, 6-106
WWKit_SetTextBrush, 3-3, 6-106
WWKit_SetTextPen, 3-3, 6-106
WZMAIN.C, 2-3, 5-3

	Wonderware FactorySuite InTouch Extensibility Toolkit User's Guide
	Contents
	Chapter 1 - Introduction to the InTouch Extensibility Toolkit
	About the InTouch Extensibility Toolkit
	Installing the InTouch Extensibility Toolkit
	Hardware/Software Requirements
	Windows 98 and Windows NT Compatibility
	Developer Requirements
	Documentation Conventions
	Terms Used in this Document

	Chapter 2 - Getting Started with the Wizard Toolkit
	What is a Wizard?
	The Components of a Wizard DLL
	Wizard Basics
	Simple Wizard .DEF File Example

	Building a Simple Wizard
	WIZARD.C File
	Globals

	Integrating a Wizard into WindowMaker
	Wizard_GetInfo Example
	Simple Wizard .RC File Example
	Building the Wizard DLL
	Installing the Wizard in WindowMaker

	Wizard Libraries
	Creating Libraries with Multiple Wizards
	Naming Conventions

	Building a Configurable Wizard
	Special Wizard Dialog Controls
	Wizard Toolkit Dialog Functions

	Chapter 3 - Wizard Toolkit Functions
	Wizard DLL Standard Functions
	Wizard API Functions
	General Functions
	Object Functions
	Utility Functions
	Link Functions
	Wizard Property Functions
	User Interface Functions
	Database Tag Functions

	Chapter 4 - User Supplied Wizard Functions
	Functions Required to Create and Configure Wizards
	Wizard_New
	Wizard_Edit

	Functions Required to Integrate Wizards into InTouch
	Wizard_GetInfo
	WizardLib_GetInfo

	Command Wizards
	Wizard_DoCommand

	Chapter 5 - Style Guide for Wizard Library Development
	Guidelines for Wizard Library Development
	Creating Libraries with Multiple Wizards
	Wizard Library Directory
	Wizard C Modules
	Function Names
	WZMAIN.C
	Header File
	Definition (.DEF) File
	Resource (.RC) File

	Chapter 6 - Wizard API Function Reference
	AccessName_Find
	AccessName_FindApplTopic
	AccessName_GetInfo
	AccessName_GetName
	AccessName_GetUniqueName
	AccessName_New
	AccessName_SetInfo
	AccessName_SetName
	AlarmObj_New
	AnlgAlarmLnk_New
	AnlgColorLnk_New
	AnlgInputLnk_New
	AnlgOutputLnk_New
	AnlgTag_GetInfo
	AnlgTag_SetInfo
	BitmapObj_New
	BlinkLnk_New
	ButtonObj_New
	DisableLnk_New
	DiscAlarmLnk_New
	DiscColorLnk_New
	DiscInputLnk_New
	DiscOutputLnk_New
	DiscTag_GetInfo
	DiscTag_SetInfo
	DiscTouchLnk_New
	DllObj_New
	EllipseObj_New
	Font_Scale
	GroupObj_New
	HistTrendObj_New
	LineObj_New
	LocationLnk_New
	Obj_Delete
	OrientationLnk_New
	PctFillLnk_New
	Point_Scale
	PointArray_Scale
	PointReal_Scale
	PointRealArray_Scale
	PolygonObj_New
	PolylineObj_New
	RealTrendObj_New
	Rect_Scale
	RectangleObj_New
	RectReal_Scale
	RRectangleObj_New
	SizeLnk_New
	SliderLnk_New
	Stmt_New
	StmtTouchLnk_New
	StrInputLnk_New
	StrOutputLnk_New
	StrTag_SetInfo
	SymbolObj_New
	Tag_Find
	Tag_FindApplTopicItem
	Tag_GetAccessInfo
	Tag_GetGroup
	Tag_GetInfo
	Tag_GetRetentiveInfo
	Tag_GetUniqueName
	Tag_GetValueAlarm
	Tag_New
	Tag_SetAccessInfo
	Tag_SetDeviationAlarm
	Tag_SetDiscAlarm
	Tag_SetEventInfo
	Tag_SetGroup
	Tag_SetInfo
	Tag_SetRateOfChangeAlarm
	Tag_SetRetentiveInfo
	Tag_SetScalingInfo
	Tag_SetValueAlarm
	Text_GetExtent
	TextObj_New
	TrendObj_SetItem
	TrendObj_SetTimeInfo
	TrendObj_SetValueInfo
	VisibilityLnk_New
	WizardObj_New
	WizProp_Delete
	WizProp_Find
	WizProp_GetBlock
	WizProp_GetDouble
	WizProp_GetDWord
	WizProp_GetExpr
	WizProp_GetFont
	WizProp_GetStmt
	WizProp_GetString
	WizProp_New
	WizProp_SetBlock
	WizProp_SetDouble
	WizProp_SetDWord
	WizProp_SetExpr
	WizProp_SetFont
	WizProp_SetStmt
	WizProp_SetString
	WWDlg_CheckExprCtrl
	WWDlg_CheckTagCtrl
	WWDlg_GetDoubleCtrl
	WWDlg_ProcessKeyCtrl
	WWDlg_RegisterColorCtrl
	WWDlg_RegisterKeyCtrl
	WWDlg_RegisterTagNameCtrl
	WWDlg_ScriptEdit
	WWDlg_SetDoubleCtrl
	WWDlg_UnregisterColorCtrl
	WWDlg_UnregisterKeyCtrl
	WWDlg_UnregisterTagNameCtrl
	WWKit_GetKeyStatus
	WWKit_GetLastError
	WWKit_GetSerialNumber
	WWKit_Init
	WWKit_SetBrush
	WWKit_SetFont
	WWKit_SetPen
	WWKit_SetTextBrush
	WWKit_SetTextPen

	Chapter 7 - Wizard API Structures
	ACCESSNAMEINFO
	ANLGTAGINFO
	DEVALARMINFO
	DISCALARMINFO
	DISCTAGINFO
	ROCALARMINFO
	STRTAGINFO
	TAGACCESSINFO
	TAGEVENTINFO
	TAGINFO
	TAGRETENTIVEINFO
	TAGSCALEINFO
	VALALARMINFO

	Chapter 8 - Testing and Debugging Wizards
	Testing Guidelines for Wizards
	Testing a Newly Installed Wizard
	Testing Wizard Sizing
	Testing Wizard Editing Capabilities
	Testing Wizard Configurations
	Testing Toolbox Operations on a Wizard
	Special Wizard Tests

	Sending Debug Messages to the Wonderware Logger
	Using CodeView to Debug the Wizard DLL
	Using Visual C++ to Debug

	Chapter 9 - InTouch QuickScript Functions
	Getting Started with the Quick Script Toolkit
	Flags

	Pasting Functions and Arguments
	Highlighting Replacement Values

	Installing Your Script Extensions
	Sample Script

	Combining the QuickScript Functions with IDEA

	Chapter 10 - IDEA Toolkit
	Requirements
	IDEA Toolkit Contents

	Functional Description
	Special Data Types
	Access ID Handles (ACCID)
	Point Handles (HPT)
	Activating Variables
	InTouch Variable Types
	Reading InTouch Variables
	Writing InTouch Variables
	Detecting InTouch Exits
	Storing Program Data with Each HPT

	Tag Handles and Memory Usage
	Accessing Remote Tags
	Program Examples
	Example #1
	Example #2
	Example #3
	Example #4
	Example #5

	IDEA Programs in the Windows NT Environment
	InTouch Notification of Tag Changes
	PtAccActivateAndNotify and PtAccHandleActivateAndNotify
	PtAccActivateAndSendNotify and PtAccHandleActivateAndSndNotify

	Running IDEA Toolkit Samples
	Function Reference
	Function Summary
	PtAccACCIDFromHPT
	PtAccActivate
	PtAccActivateAndNotify
	PtAccActivateAndSendNotify
	PtAccDeactivate
	PtAccDelete
	PtAccGetExtraInt
	PtAccGetExtraLong
	PtAccHandleActivate
	PtAccHandleActivateAndNotify
	PtAccHandleActivateAndSndNotify
	PtAccHandleCreate
	PtAccHandleDeactivate
	PtAccHandleDelete
	PtAccInit
	PtAccOK
	PtAccReadA
	PtAccReadD
	PtAccReadI
	PtAccReadM
	PtAccReadR
	PtAccSetExtraInt
	PtAccSetExtraLong
	PtAccShutdown
	PtAccShutdownAllAssociated
	PtAccType
	PtAccWriteA
	PtAccWriteD
	PtAccWriteI
	PtAccWriteM
	PtAccWriteR

	Chapter 11 - ITEdit.OCX
	ITEdit Overview
	Registering ITEdit.OCX
	Installing ITEdit.OCX
	Configuring ITEdit.OCX
	ITEdit Properties
	Stock Properties

	Custom Properties
	IT ActivationMode Property
	ITDataIsValid Property
	ITFormat Property
	ITOffMessage Property
	ITOnMessage Property
	ITRunning Property
	ITTagName Property
	ITTagType Property
	ITValue Property
	ITValueQuality Property

	Events
	ITNotifyValue Event
	ITNotifyQuality Event
	Using ITNotifyValue and ITNotifyQuality

	Error Dialog Box

	Chapter 12 - Tag Access
	Tag Access ActiveX Objects for InTouch
	Requirements
	Deployment Information
	DataChange ActiveX Control
	Events
	Methods
	Trappable Errors

	TagLink Object
	Properties
	Dot Field Properties
	Trappable Errors

	Sample Applications
	Combining the DataChange Control and TagLink Object: An Example
	TagBrowser ActiveX Control
	Properties
	Methods
	Events

	Index

